切欠き先端近傍における構造用鋼材の延性破壊発生条件

(その1)実験計画及び素材特性

建築構造用鋼材	延性き裂	応力集中
切欠き	応力三軸度	相当ひずみ

1. はじめに

鋼構造物における溶接欠陥などの応力集中部からの破 壊は延性き裂を起点として脆性破壊に至ることが知られ ており,破壊発生の抑制を目的とし延性破壊の発生・進 展を把握する研究が行われている^{1,2)}.鋼材の延性破壊は 応力三軸度に対する限界歪として与えられることが提唱 されている 1-3). 本研究では、この延性破壊発生条件を求 めることを目的として, 切欠き先端半径を変えた円周切 欠き付き丸棒の引張試験を行って検討 4)を進めているが, 昨年に引き続き、鋼種や切欠き半径を変えた実験を行っ た.

2. 試験概要

2.1 試験片

試験片形状を図 1 に示す. 使用する鋼材は SN400B, SN490B, BCP325, BCP325Tの4種類とする. 使用鋼材の 機械的性質と化学成分を表 1,表 2 に示す. 切欠きの形状 は3 種類である. 前報⁴⁾ において切欠き半径を 2.0 mm で は表面からのき裂が観察できなかったため、切欠き半径 を 1.5 mm以下と設定した. SN400B, BCP325 は R0.5~1.5 を各2本, SN490BはR1.0を1本, R1.5を2本, BCP325T はR0.5~1.5を各1本実施した.

				(
细插	Y.P.	T.S.	EL.	Y.R.	vEo
到刊生	N/	'mm²	9	J	
SN400B	272	420	30	65	311
SN490B	379	533	27	71	188
BCP325	382	539	27	71	264
BCP325T	396	530	32	75	306
Y.P. :降伏点, T.S :引張強さ, EL.:伸び					

表1 供試材の機械的性質(ミルシート)

Y.R.:降伏比, vEo:0°Cシャルピー吸収エネルギー

表 2 供試材の化字成分(ミルシー	表	2	供試材	t の 化	学成	分(:	ミル	シー	۲	١
-------------------	---	---	-----	-------------	----	-----	----	----	----------	---

鋼種	С	Si	Mn	Р	S	Cu	Ni	Cr	Mo	Nb	V	Sn	В	Ceq	Pcn
	×100		×10	000) ×100				×1000		$\times 1000$	$\times 10000$	$\times 1$	×100	
SN400B	8	23	90	14	5	19	8	10	3		2	10	1	27	15
SN490B	13	28	133	13	5	19	7	11	3	13	4	8	11	39	23
BCP325	15	28	140	10	3	1	1	3	1	1	0	-	-	40	-
BCP325T	16	26	151	7	2	1	1	2	0	1	1	-	0	42	-
Ceq:炭素当量, Pcm:溶接割れ感受性組成															

2.2 載荷方法

載荷は 400kN 油圧式万能材料試験機を用いて実施した. 切欠き付き丸棒試験片はき裂観察のため常温で行い、マ

A ductile fracture criterion in structural steels near notch tip

- Part 1: Experimental outline and material test results -

正会員	○服部	和徳*1
同	後藤	拓紀 ^{*2}
司	見波	進*3
同	宗川	陽祐 ^{*1}

イクロスコープを用い観察した. 切欠き部の最小径と標 点距離26mmの変位をレーザー寸法測定器を使用し連続的 に測定した. 応力歪関係を得るため φ 6mm の 14A 号試験 片の素材引張試験を常温で実施した.

3. 試験結果

3.1 素材試験結果

素材試験の結果を表 3, 図 2 に引張試験結果を真応力真 歪関係で示す. 図中丸プロットは後に用いる FEM 解析用 応力歪曲線である.

		矛	ξ3	素材	試験	結果			
파문	细看	$\sigma_{YL,}~\sigma_{0.2}$	σ_{u}	EL.	Y.R.	vEo	φ	εu	e u
μ L	到刊1里	N/mm²		%		J	%		
4	SN400B	267	422	37.5	63.3	295	67.1	20.7	18.8
Ν	SN490B	386	540	36.6	71.5	160	67.8	16.6	15.4
5	BCP325	317	520	30.2	61.1	187	72.4	16.4	15.2
Т	BCP325T	440	541	27.9	81.4	268	69.2	13.0	12.2
σ_{YL} :降伏点, $\sigma_{0.2}$:0.2% 耐力, σ_u :引張強さ,EL.:伸び									
Y.R.:降伏比,、Eo:0°Cシャルピー吸収エネルギー,φ:しぼり									
ε _n :一様伸び, e _n : 真一様伸び									

3.2 シャルピー衝撃試験結果

表4にシャルピー衝撃試験結果一覧,図3に吸収エネル ギーおよび脆性破面率の遷移曲線を示す.表4における ,E₀は0℃時の吸収エネルギー平均値であり、これ以外の表 中の結果は次式で近似する遷移曲線から求めている.

Kazunori Hattori, Takunori Goto, Susumu Minami, Yosuke Sokawa

L	DITTIOD	275	270	41.2	57.0	7.07	50.7	
ſ	SN490B	160	198	-29.2	-9.1	2.50	2.46	
ſ	BCP325	187	217	-36.3	-20.6	3.25	1.97	
ſ	BCP325T	268	258	-67.5	-64.3	8.43	7.13	
	_v E ₀ :0°C シャルピー吸収エネルギー							

vE{shelf}:上部棚吸収エネルギー _vT_E:エネルギー遷移温度,_vT_s:破面遷移温度

α:エネルギー遷移係数, β:破面遷移係

3.3 切欠き付き丸棒

実験から得られた平均真応力平均真歪の関係を図4に示 す.ここで真応力sと真歪eは次式で定義された切欠き底 を通る断面の平均的な真応力と真歪を表している.

	$s = P/(\pi d^2/4) \dots \dots \dots \dots (3)$
	$e = 2\ln(d_0/d) \cdots \cdots \cdots \cdots \cdots (4)$
ここで,	s:平均真応力, e:平均真歪, P:引張荷重,

 d_0 :初期直径, d:当該負荷レベルにおける直径

4. 有限要素法解析

試験片形状の対称性を考慮し、1/4 の回転対称モデルと し、切欠き底より標点距離である 13.5mm の範囲とした. 要素分割は切欠き底近傍で1辺の大きさを0.1mmとした. R1.0について図5に要素分割を例として示す.載荷条件は 変位制御とした.解析に用いる応力-歪関係は 14A 号試験 片の実験値から多直線に近似した(図2).

5. まとめ

(その 1)では、実験方法と FEM 解析方法ならびに素材 試験結果と切欠き付き丸棒の試験の一部について示した. なお、BCP325、BCP325T は平板部より採取したが、若干

*1(一財)ベターリビングつくば建築試験研究センター・博士(工学)

- *2 東京電機大学 理工学研究科 修士課程
- *3 東京電機大学 理工学部 教授・博士(工学)

冷間加工の影響が現れる形であった.

(その 2)では,実験結果と延性き裂発生条件について考察 する.

【参考文献】

- 2) 桑村仁、山本恵市:三軸応力状態における構造用鋼材の延性き裂 発生条件、日本建築学会構造系論文集、No.477, pp.129-135, 1995.11
- 小野徹郎, 佐藤篤司, 横川貴之, 相川直子: 構造用鋼材の延性き裂 発生条件, 日本建築学会構造系論文集, No.565, pp.127-134, 2003.3
- A.C.Mackenzie, J.W.Hancock, D.K.Brown: On the influence of state of stress on ductile failure initiation in high strength steels, Engineering Fracture Mechanics, Vol.9, Issue 1, pp.167-168, 1977
- 4) 見波進,服部和徳,宗川陽祐:切欠き先端近傍の延性き裂発生に おける構造用鋼材の破壊条件,日本建築学会大会講演梗概集,C-1, pp.1019-1020,2022.9

*1 Tsukuba Building Test Laboratory of Center for Better Living, Dr. Eng.

*2 Graduate student, Graduate School of Science and Eng., Tokyo Denki Univ.

*3 Prof., School of Science and Eng., Tokyo Denki Univ., Dr. Eng.