CLT パネル工法建築物の倒壊限界を考慮した耐震設計法構築に関する基礎的検討 その4 CLT 壁パネルの限界性能確認実験

正会員	○田中 信司*1	同	三宅 辰哉*2
同	中島 昌一*3	同	岡部 実*4
同	五十田 博*5	同	河合 直人*6

CLT 壁パネル	限界性能	圧縮破壊
面外座屈	水平耐力	鉛直耐力

1. はじめに

2014年度に実施した振動台実験1)の対象とした実大5層架 構試験体では、1階CLT壁パネル脚部に圧壊が生じ、それに起 因する倒壊が危ぶまれたため、その時点で加振を終了した。 同じく、3層試験体では1階CLT壁パネル全面に面内せん断破 壊が生じた。このような現象は実建物でも生じ得るものであり、 倒壊限界を考慮した耐震設計法を検討するにあたって、CLT 壁パネルに破壊が生じる場合の水平力・鉛直荷重に対する耐 力保持限界を把握する必要がある。

本報では、そのための基礎的検討として実施したCLT壁パ ネルの定軸力下水平加力実験について報告する。

2. 試験体・加力方法

D

試験体構成例を図1に示し、試験体の種類を表1に示す。こ れらのうちW10シリーズは壁パネルの曲げ破壊あるいはパネル 脚部引張接合部の破壊を想定し、W15、W20シリーズは壁パネ ルの面内せん断破壊を想定する。壁パネル高さと加力点高さ はいずれも2.8m、3.0mであり、壁パネルの横移動はパネル脚 部に設けた鋼製ストッパーにより拘束している。

本実験では、まず、壁パネル上部の壁パネル幅中央の位置 に定軸力Pvを載荷し、その後、壁パネル上部に設置した加力 梁中央の位置に特定変形角を振幅とした正負繰り返し水平荷 重Pを与える。特定変形角は1/450, 1/300, 1/200, 1/150, 1/100, 1/75, 1/50, 1/30とし、繰り返し数は1とする。その後、試験装置の 限界まで水平加力を継続する。この過程で壁パネルの破壊等 により定軸力を保持できなくなる場合は、その状態を鉛直耐力 保持限界として加力を終了する。

D

3. 実験結果

3.1 破壊状況

図2に典型的な破壊状況例を示す。曲げ破壊型(W10)は W10DP-V400を除きいずれもほぼ同様で、①断面欠損部の圧 縮側に「もめ」と呼ばれる局部的圧壊が生じ、②水平力の方向 が反転すると、その部分に引張破断が生じた。その後、破壊が 進展し、最後は③圧壊によって鉛直荷重を支持できなくなった。 W10DP-V400については、壁パネルの破壊は生じず、加力装 置の限界に達した時点で終了した。せん断破壊型(W15, W20) についてもいずれも同様で、①面内せん断変形に伴い内層ラ ミナが分離し、続いて、②ラミナ単位の圧縮座屈が生じた。最 後は③それがパネル全面に広がって、鉛直荷重を支持できな くなった。

(a) W10TB-V800

3.2 荷重変形関係

図3,4に各試験体の荷重変形関係を示す。いずれも上段が

P_V P_V	表1 試験体の種類					
	名称	CLT パネル	パネル 幅	パネル脚部引張接合部	定軸力 <i>P_V</i>	タイ ロッド
	W10TB-V800		1000mm	引きボルト M24 (ABR490)	800kN	なし
	W10TB-V400	S60-5-5			400kN	
	W10DP-V800	150mm 厚		鋼板挿入ドリフトピン 8- φ20	800kN	
	W10DP-V400			ボルト M24 (ABR490)	400kN	
	W15-V450		1500mm	なし	450kN	あり
	W15-V150	S60-3-3			150kN	
W10TB W15	W20-V400	90mm 厚	2000		400kN	
	W20-V200		200011111		200kN	

A basic study on the seismic design method for CLT panel constructions considering the limit of collapse. Part 4: Tests on the limit performance of CLT wall panels.

Shinji TANAKA, Tatsuya MIYAKE, Shoichi NAKASHIMA, Minoru OKABE, Naohito KAWAI and Hiroshi ISODA

図3 実験結果(上段:水平荷重-水平変位関係、下段:鉛直荷重-水平変位関係)

水平荷重-水平変位関係、下段が鉛直荷重水平荷重-水平変 位関係である。

4. 限界変形角

これらの結果に基づいて、水平耐力保持限界変形角 $\theta_{u,h}$ と 鉛直耐力保持限界変形角 $\theta_{u,v}$ の基準化を試みる。 $\theta_{u,h}$ は水平 荷重がそれ以前の最大荷重の0.8に低下するとき、 $\theta_{u,h}$ は鉛直 荷重が定軸力の0.9倍に低下するときの変形角とする。

基準化のパラメータとして、曲げ破壊型試験体については、 破壊が断面欠損部に生じたことを考慮して、式(1)の弾性検定 比 γ_e を選択し、せん断破壊型試験体については、破壊がラミナ の圧縮座屈で決まっていたことを考慮して、式(2)の平均圧縮 応力度 σ_c を選択する。

$$\gamma_e = \frac{P_V}{A_e \cdot F} + \frac{M}{Z_e \cdot F}$$
(1)
$$\sigma_c = \frac{P_V}{A}$$
(2)

ここで、Mは断面欠損部(TBシリーズでは座金孔下端、DPシリ ーズでは最上部ドリフトピン孔心)の曲げ応力、A_e, Z_eは断面 欠損部の断面積と断面係数、Fは壁パネルの面内強度、Aは 壁パネルの全断面積である。Fは実態に近い値として20N/mm² とする。各試験体について、θ_{u,h}、θ_{u,h}と基準化パラメータとの関 係を図4に示す。なお、図4(a)には2018年度に実施した同様の実験²による結果を併記した。

 $\theta_{u,h}$ については、曲げ破壊型・引きボルト接合については黒 実線、ドリフトピン接合については灰色破線のような基準化が 可能と言える。また、壁パネル破壊が生じる場合も1/30rad程度 の変形能力が確認できる。せん断破壊型については、 σ_c との 相関は認められない。基準値として50%下限値をとれば 7.68mradとなる。 $\theta_{u,v}$ については、下式が良い近似を与える。

曲げ破壊型 $\theta_{u.v} = 120/\gamma_e^3$ (×1/1000rad) (3) せん断破壊型 $\theta_{u.v} = 100/\sigma_c$ (×1/1000rad) (4)

5. まとめ

CLT壁パネルの定軸力下水平加力実験結果に基づき、今後、CLTパネル工法建築物の倒壊限界予測の必要条件となる CLT壁パネルの水平力・鉛直荷重に対する耐力保持限界を把 握するとともに基準化の試案を提示した。

参考文献

- 日本住宅・木材技術センター、日本CLT協会、日本システム設計:住宅市場整備推進事業「CLTを用いた木造建築基準の高度化推進事業」報告書、平成27年3月
- 2) 日本システム設計:CLT等新たな木質建築部材利用促進・ 定着事業,CLTパネル工法における架構方法の合理化と構 造モデルの簡略化検討事業報告書,令和元年3月

*1 日本システム設計

- *2 日本システム設計 代表取締役 博(工)
- *3 建築研究所構造研究グループ 主任研究員 博(農)
- *4 ベターリビング つくば建築試験研究センター 博(農)
- *5 京都大学生存圈研究所 教授 博(工)
- *6 工学院大学建築学部 教授 工博

- *1 Nihon System Sekkei Architects & Engineers
- *2 Nihon System Sekkei Architects & Engineers, Dr. Eng.
- *3 Senior Research Engineer, BRI, Dr. Agr.
- *4 Center for Better Living, Dr.Agr.
- *5 Professor, Kyoto University, Dr. Eng.
- *6 Professor, Kogakuin University, Dr. Eng.