鋼板挿入ドリフトピン式集成材ブレース耐力壁の2層架構の実大水平せん断加力実験

集成材	鋼板挿入ドリフトピン接合	ブレース	正会員	○秋山信彦 *1	同	山崎義
終局耐力	耐震設計	塑性変形能	同	槌本敬大 ^{*3}	同	津田千

はじめに 1

本研究は、木規準じに示された標準的な接合技術を用い た鋼板挿入ドリフトピン(以下、DP)式集成材ブレース 構造の耐震設計法の確立を最終目標としている。現状、本 構造の終局耐力や塑性変形能の確保に関する知見が十分と は言い難い。加えて、近年の導入建物の中高層化への対応 のため、高耐力化の実現可能性を検討する必要もある。

そこで本報では、最上階/最下階を模擬した2層架構に 対する実大水平せん断加力実験を実施し、実態性能の把握 と性能確保に関する課題抽出を行った結果を報告する。

2. 2 層架構実験

2.1 試験体および試験方法

Fig. 1 と Table 1/Fig. 2 に試験時の様子と試験体の仕様 / 試 験セットアップを示す。試験体は長さ1mのブレース耐力 壁を中央にして両側 1m 離れた位置に両端ピンの鋼管独立 柱を配置した構成である。ブレース端接合部(J05, J15)を 先行降伏させて塑性変形能を確保する設計としている。

試験体は部材が同形状のAとBを1体ずつ用意した。 試験体 B は A に対して接合部の補強(割裂補強、開き止め、

Fig. 1 Shear test scenery Table 1 Specifications of Specimen A & B ($1 \sim 8$ & J01~20 correspond to Fig.2)

部任	<u>V</u> .	構造用集成材(オウシュ	Phry)		鋼板挿入DP接合部			
層部	脙材	強度等級	幅 [mm]	せい [mm]	DP本数	割裂 補強	開き止め ビス本数	
1 t	主(右)	A:E105-F300/B:E120-F330	150	210	J01=13/J02=13	-	-	
1. 2 t	主(左)	E95-F315	150	150	J03= 5/J04= 5	A:-/B:o		
18 3 7	パレース	E105-F300	150	360	J05=13/J06=14	0	A:4/B:8(J05)	
(4)	梁	E105-F300	150	650	J07,09,10=10/J08=33	-	-	
(5) t	主(右)	E95-F315	150	150	J11= 6/J12= 6	-	-	
2° 6 t	主(左)	E95-F315	150	150	J13= 5/J14= 5	-		
- ²³ ⑦ 7	パレース	E105-F300	150	180	J15= 6/J16= 7	0	A:2/B:4(J15)	
8	梁	E105-F300	150	450	J17,18,20=10/J19=19	-	-	

Full-Scale Shear Test of 2-story Glulam Braced Structure with Drift-pin joints with inserted steel plate

正会員	○秋山信彦 *1	同	山崎義弘*2
同	槌本 敬大 ^{*3}	同	津田千尋 *4

座屈補強)と部材の強度等級を一部付加している。部材の 接合部は鋼板挿入 DP 接合部を用い、挿入鋼板は SN490B で厚さ12mm (集成材のスリット幅14mm)、DPはSS400で 径 16mm(端部加工 C3、集成材幅-5mmの長さ 145mm)と した。割裂補強と開き止めは全ねじビスを用いた。

試験方法は1層の変位に対して2層の変位が2倍となる ように正負交番繰り返し加力とした。加力スケジュール は1層の層間変形角を用いて文献2に準じて1/450,1/300, 1/200, 1/150, 1/100, 1/75, 1/50rad を3回、1/30rad を1回繰り返 しとした。加力スケジュール終了後、正方向には 1/20rad、 負方向には 1/25rad まで加力して試験終了とした。

2.2 評価方法

各層の層せん断力と層間変形角は次式により評価した。

$$\begin{cases} Q_1 = P_1 + P_2 \\ Q_2 = P_2 \end{cases} [1] \qquad \begin{cases} \gamma_1 = \delta_1 / H_1 \\ \gamma_2 = (\delta_2 - \delta_1) / H_2 \end{cases} [2]$$

ここで、 $Q_i: i$ 層の層せん断力, $P_i: i$ 層の加力ジャッキ荷 重, γ_i: *i* 層の層間変形角, δ_i: *i* 層の加力ジャッキ位置水平変 位, H_i: i 層の加力ジャッキ位置層高さ(i=1,2)

得られた層せん断力 - 層間変形角関係について、壁倍率 評価²に準じて、各方向の包絡線から水平せん断性能に関 する各特性値を評価した。なお、特定変形時は1/150とした。

AKIYAMA Nobuhiko, YAMAZAKI Yoshihiro, TSUCHIMOTO Takahiro, TSUDA Chihiro

2.3 試験結果と考察

Fig.3に層せん断力 - 層間変形角関係、Fig.4に代表的な 破壊性状、Table 2 に水平せん断性能の特性値一覧、Fig. 5 に等価粘性減衰定数(正加力側を基準に評価)を示した。

破壊性状について、いずれの試験体とも、最初の破壊は 正方向加力時の柱(右)の柱脚接合部 J01 における曲げ引 張破壊であった。試験体Bでは割裂補強と強度等級の付 加により発生の抑制はある程度できたが、完全な防止はで きず今後の課題といえる。試験体Aは、続いて2層目の ブレースの接合部 J15 の露出した挿入鋼板部分において面 外座屈して荷重低下した。試験体 B では座屈補強の付加 により防止された。大変形時には、いずれの試験体ともブ レース端接合部において DP 列をつたう割裂破壊が生じ、 試験体 A では DP の変形に伴うスリットの開きによる著し い割裂破壊も生じて耐力が低下した。試験体Bは開き止 めの付加により後者の破壊は抑制されたようだった。

水平せん断性能は、単位長さ当りの許容耐力でみて、1 層で 74.3~102kN/m (壁倍率で 37.9~52.3 倍)、2 層で試験体 A:正 32.1kN/m (16.4 倍)/負 3.0kN/m (1.5 倍)、試験体 B:正 23.2kN/m (11.9倍)/負 21.9kN/m (11.1倍)となった。試験体 Aの負側で著しく低性能なのは、初期のすべりが他と比し

Fig. 3 Story shear - story drift angle relations

Table 2 Properties from test results

-														
試験	荷重	層	Κ	$P_{\rm 120}$	P_{150}	$P_{\rm y}$	$P_{\rm max}$	$P_{\rm u}$	μ	$D_{\rm s}$	$\frac{2}{3}P_{mx}$	02P	P_{a}	а
体	方向	1	[kN/rad]	[kN]	[kN]	[kN]	[kN]	[kN]	[-]	[-]	[kN]	[kN]	[kN/m]	[-]
А	Æ	1	14755	123	97.0	125	201	185	4.05	0.38	134	<u>98.3</u>	97.0 (98.3)	49.5 (50.2)
		2	5697	46.5	32.1	72.7	99.5	89.7	2.96	0.45	66.3	<u>39.8</u>	32.1 (39.8)	16.4 (20.3)
	負	1	14648	121	88.0	133	208	189	2.43	0.51	139	74.3	74.3 (74.3)	37.9 (37.9)
		2	3945	6.4	3.0	<u>59.4</u>	79.0	34.6	2.27	0.53	<u>52.7</u>	13.0	3.0 (6.4)	1.5 (3.3)
В	표	1	15460	133	106	150	226	199	3.81	0.39	151	102	102 (102)	52.3 (52.3)
	-11-	2	3842	30.1	23.2	83.5	106	96.8	1.90	0.60	70.5	<u>32.5</u>	23.2 (30.1)	11.9 (15.4)
	負	1	15693	131	103	128	213	194	3.07	0.44	142	88.2	88.2 (88.2)	45.0 (45.0)
		2	1/130	30.4	21.0	77 5	97.0	85.2	1.85	0.61	64.7	28.0	21.9 (28.0)	11.1(14.3)

^{*}K:初期剛性,P₁₃₇/P₁₉₅1/120m時1/150m時前力,P₁/P_{1m2}/P₂/P₂:降伏耐力/最大耐力/終局耐力/単位長さ当り の許容耐力,µ:塑性率,D:耐力壁の構造特性係数,a:壁倍率 *P₃とaの()内の数値はP₁₃₇での評価値

置上以前の水和設置がした。 建築研究所・博士(二学) 建築研究所・博士(農学) ーリビングつくば建築試験研究センター,博士(工学) 上席研究員, (一財) ベタ・

て大きく特定変形時の耐力が低いことが要因であり、この すべりの管理も課題といえる。耐力壁としての Ds 値は正 側で 0.38~0.60 で、特定変形時の耐力の低い≒剛性の低い 2層で大きい傾向にあった。

等価粘性減衰定数は、1/200rad 程度で 5% 前後、その後 は経験最大変形角の増加に応じて上昇傾向を示し、1/30 rad 程度では 10~20 % 程度まで増大した。また、2、3 回目のル ープでは1回目に対して平均的に 6.4~7.1 割に低下した。

Fig.6に実験値の包絡線と解析モデルによる計算値を比 較した。解析モデルは接合部の軸方向特性のみを考慮した 場合と曲げ特性を考慮した場合の2種類とした。後者が実 験値とよく対応し、前者との差から接合部の曲げ抵抗が架 構の水平せん断性能に大きく影響する示唆を得た。

まとめ 3.

最上階/最下階を模擬した2層ブレース架構に対する実 大水平せん断加力実験を実施し、実態性能の把握と課題抽 出を行った。

【付記】本研究の一部は、建築研究所研究開発課題「木造建築物の中高層化等 技術に関する研究開発」の一環として実施した。

【参考文献】 1) 日本建築学会:木質構造設計規準・同解説 2006

2)(公財)日本住宅・木材技術センター:木造軸組工法住宅の許容応力度設計2017

Fig. 4 Failure modes

Senior Researcher, National Institute for Land and Infrastructure Management, Dr. Agr.

*1 *2 *3 *4

Senior Research Engineer, Building Research Institute, Dr. Eng. Chief Research Engineer, Building Research Institute, Dr. Agr. Center for Better Living Tsukuba building research and testing laboratory, Dr. Eng.