35 度開先面に融合不良を有する接合部の繰返し載荷実験

その8 欠陥位置の影響 実験結果および考察

正会員	○服部	和徳*	同	見波	進**
同	宗川	陽祐*			

開先面	融合不良	溶接欠陥
繰返し載荷	欠陥位置	欠陥率

1.はじめに

前報(その7)に引き続き、本報(その8)では、実験 結果および塑性変形能力について述べる。

2.実験結果

表 1 に実験結果一覧を示す。表 1 には、応力拡大係数 の形状係数 $F_{I,A}(\lambda, \epsilon)$ を併せて示す。形状係数の算出方法は、 (その 7)を参照されたい。図 1 に荷重-変位関係を示す。 また、図 2 に荷重-変位関係から求めたスケルトン曲線の 比較を示す。累積塑性変形倍率 η w は、実験結果から得ら れた荷重-変位曲線の正側のすべてのループについて足し 合わせたもの(=Wtotal)を以下のように Pp、 δp で除し て算出した。

累積塑性変形倍率 ηs は、スケルトン曲線(正側:最大荷 重まで)のエネルギーW を Pp、δp で除して算出した。

 $\eta_w = \frac{W_{total}}{P_P \times \delta p}$... $\vec{r}(1)$ $\eta_s = \frac{W}{P_P \times \delta p}$... $\vec{r}(2)$

Wtotal:破壊までの累積エネルギー(正側)

 ₩:スケルトン曲線から求めたエネルギー(正側: 最大荷重まで)

- P_p:全塑性時荷重
- δ_p:全塑性時弾性変位

3.破壊性状

破壊性状を写真1に示す。いずれの試験体も溶接欠陥から延性亀裂が進展している。No.1~No.4 試験体は、溶接欠陥から延性亀裂が進展しながら荷重低下を呈し、最終的には延性亀裂を起点に脆性破断をしている。No.5 試験体は、他の試験体と同様に溶接欠陥から延性破壊が進展し、ゆっくりと荷重が低下し延性的に破断した。

4.考察

図3に最大耐力 P_{max}-端部からの距離関係を示す。既往 の研究と同様、中央欠陥に比べ、端部欠陥の方が最大耐 力は、小さい結果であった。また、端部からの距離が大 きくなるにつれて、最大耐力は大きくなる傾向であった。

衣! 夫歌和朱一見	衣!	美颖茄米一覧
-----------	----	--------

封驗休夕	欠陥長さ	欠陥深さ	欠陥率	端部からの距離	Pmax	δmax			$\mathbf{F}_{\mathbf{u}}(\mathbf{\lambda} = \mathbf{a})$	亀裂発生	破壊	在海外中	
武帜仲名	mm	mm	%	mm	kN	mm	пs	цs	цw	$\Gamma_{1A}(\Lambda, \varepsilon)$	サイクル	サイクル	收场注扒
No.1	20	10	8.00	10	330.44	26.75	5.97	22.5	2.0000	4	6	延性、脆性	
No.2	20	10	8.00	15	333.04	26.01	6.55	27.3	1.3460	4	6	延性、脆性	
No.3	20	10	8.00	20	346.76	30.59	7.01	32.5	1.1483	4	7	延性、脆性	
No.4	20	10	8.00	35	355.80	40.60	8.89	36.5	1.0507	4	7	延性、脆性	
No.5	20	10	8.00	50	358.24	33.06	10.12	39.3	1.0246	4	7	延性	
$Pmax$:最大荷重、 δmax :最大荷重時の変位、 ηs :スケルトン曲線から算出した累積塑性変形倍率													
$ηw:$ 累積塑性変形倍率、 $F_{1A}(\lambda, ε)$:偏心き裂をもつ帯板が一様に引張られる場合の応力拡大係数 K の形状係数													

Cyclic loading test of joints with lack-of-fusion defect at 35 degrees groove face Part 8: Influence of defect position; experimental results

Kazunori Hattori, Susumu Minami, Yosuke Sokawa

図4に ηs-端部からの距離関係を示す。図5に ηw-端部 からの距離関係を示す。ηs および ηw についても、最大耐 力と同様の傾向があり、端部からの距離が大きくなるに つれて、変形能力は大きくなる傾向であった。

端部からの距離が大きくなるにつれて、応力拡大係数 は小さくなり、一方、変形能力は逆に大きくなることが 分かった。そこで、中央欠陥の値(試験体 No.5)を基準に して、その逆数を無次元化した結果の一覧表を表 2 に示 す。無次元化逆数は、下式により算出した。

無次元化逆数
$$(\eta_s) = \frac{1}{\eta_s \div \eta_s (p + \chi f h h)}$$
無次元化逆数 $(\eta_w) = \frac{1}{\eta_w \div \eta_w (p + \chi f h h)}$

図 6 に無次元化逆数と端部からの距離の関係を示す。フ ランジ端部からの距離と変形能力の関係について、応力 拡大係数 K の形状係数 $F_{I,A}(\lambda, \epsilon)$ の傾向と累積塑性変形倍 率(η s および η w)の傾向は概ね対応していることが見てと れる。

5.まとめ

欠陥の位置に着目した曲げ破壊試験を実施した結果、 以下のことが明らかとなった。

- ケ陥位置がフランジ端部からの距離が大きくなるに つれて、耐力および塑性変形能力は大きくなる。
- 2) フランジ端部からの距離と変形能力の関係については、破壊パラメータ応力拡大係数 K で概ねその傾向は説明が出来る。
- (3) 欠陥率が同じであっても、欠陥位置により耐力および変形性能は異なる。
- 【謝辞】実験の実施にあたり当時東京電機大学学生片山翔太 君、成田拡企君の協力を得た。ここに謝意を表す。

表2 無次元化逆数 (ηs、ηw) および FLA(λ, ε)

試験体			E. () a)	無次元化逆数			
No.	ηs	цw	$F_{1A}(\Lambda, \varepsilon)$	ηs	ηw		
1	5.97	22.5	2.0000	1.70	1.75		
2	6.55	27.3	1.3460	1.54	1.44		
3	7.01	32.5	1.1483	1.44	1.21		
4	8.89	36.5	1.0507	1.14	1.08		
5	10.12	39.3	1.0246	1.00	1.00		

 $[\]eta_s$:スケルトン曲線から算出した累積塑性変形倍率、 η_w :累積塑性変形倍率、 F_{1A}(λ, ϵ):偏心き裂をもつ帯板が一様に引張られる場合の応力拡大係数Kの形状係数

* (一財)ベターリビングつくば建築試験研究センター・博士(工学)
 ** 東京電機大学 理工学部 教授・博士(工学)

* Tsukuba Building Test Laboratory of Center for Better Living, Dr. Eng.
 ** Prof., School of Science and Eng., Tokyo Denki Univ., Dr. Eng.