35 度開先面に融合不良を有する接合部の繰返し載荷実験

その7 欠陥位置の影響 実験概要

正会員	○見波 進*	同	服部	和徳**
同	宗川 陽祐**	k		

開先面	融合不良	溶接欠陥
繰返し載荷	欠陥位置	欠陥率

1.はじめに

溶接欠陥が接合部の強度や伸び能力を低下させること は知られている。近年の研究において、溶接欠陥が鋼部 材の塑性変形能力に及ぼす影響について検討がなされて おり、溶接欠陥寸法だけではなく、その位置が大きく影 響していることが明らかとなっている。これらの研究成 果を受けて、日本建築学会:鋼構造建築溶接部の超音波 探傷検査規準・同解説¹⁾においても、溶接欠陥位置を考慮 したより合理的な合否判定基準を将来設定する可能性を 示唆している。

具体的には、中央欠陥より端部欠陥の方が変形能力は 低くなることが明らかとなっている。既往の研究では、 中央欠陥と端部欠陥の比較検討²⁾は行われているが、中 央欠陥と端部欠陥の間に存在する欠陥について検討され た事例はほとんどない。

本研究では、欠陥位置(フランジ端部からの距離)をパラ メータとした試験体の繰返し曲げ破壊試験を実施し、溶 接欠陥位置が部材の塑性変形性能に及ぼす影響について 実験的に把握することが目的である。

2.試験体

試験体の形状を図1に示す。各試験体は開先角度 35°の開先面に沿った溶接欠陥を有するモデルを対象とし、 中央欠陥から端部欠陥の間で欠陥位置を変えて実験を行 うこととする。欠陥の位置を図2に示す。試験体一覧を 表1に示す。本研究では欠陥の位置のみについて検討を することとして、溶接は行なわず、均質な母材に切欠き 状の欠陥を人工的に設けることとした。試験板は幅 140mm (試験部 100mm 幅)、長さ 300mm、板厚 25mm の SN490B 鋼材に欠陥を放電加工で作成した。欠陥寸法は、 欠陥高さ:10mm、欠陥長さ:20mm とし、いずれの試験 体も欠陥率は 8.0%と統一した。使用鋼材の機械的性質を 表2に、化学成分を表3に示す。

3. 載荷方法

実験装置は 1000kN アムスラー型油圧万能試験機を用いた。図3に示すように試験体と加力ビームをボルトでつなぎ、載荷点ビームを載せ2点載荷として荷重を加える。試験体に曲げ荷重を加えることにより、表面付近に存在す

る欠陥により厳しい条件を負荷するように考慮した。繰 り返し載荷は、全塑性耐力 cPp:236.8kN 時の変位量 cδp: 6.82mm を基準とし加力を実施した。

弾性範囲の±100kNを1回行い、正負を交互に繰返し、 全体中央変位δが±13.6mm(1、2サイクル)、±27.3mm(3、 4サイクル)、±40.9mm(5、6サイクル)、±54.6mm(7、8サ イクル)となるように各2回ずつ行い、その後は押切り(9

表1 試験体一覧

No	端部からの距離 ^{**1}	欠	陥寸法(m	m)	欠陥率**2	備老	
110.	(mm)	高さ	高さ 長さ 幅		%	加巧	
1	10	10	20	0.6	8.0	端部欠陥	
2	15	10	20	0.6	8.0	-	
3	20	10	20	0.6	8.0	-	
4	35	10	20	0.6	8.0	-	
5	50	10	20	0.6	8.0	中央欠陥	

※1:フランジ端部から溶接欠陥中央までの距離

※2:欠陥率=欠陥面積÷フランジ断面積×100

表2 供試材の機械的性質

試験片採取 位置	試験温度	ØуH	буL	σu	Y.R.	EL.	vEo
	°C	N/mm ²	N/mm ²	N/mm^2	%	%	J
フランジ	常温	388	383	527	74	29	104
	0°C	395	382	538	73	28	194

σyH:上降伏点、σyL:下降伏点、σu:引張強さ、Y.R.:降伏比
EL.:伸び、vEo:0℃シャルピー吸収エネルギー

表3 供試材の化学成分(ミルシート)

С	Si	Mn	Р	\mathbf{S}	Cu	Ni	\mathbf{Cr}	Mo	Nb	V	Sn	В	Ceq	Pcm
	×100 ×1000 ×100			×1000 ×10000			×100							
12	24	130	15	5	14	8	7	3	11	33	19	5	38	21

Ceq:炭素当量、Pcm:溶接割れ感受性組成

Cyclic loading test of joints with lack-of-fusion defect at 35 degrees groove face

Part 7: Influence of defect position; experimental outline

Susumu Minami, Kazunori Hattori, Yosuke Sokawa

サイクル)とする計画とした。試験温度は 0℃と設定した。

ドライアイスで冷やした エタノールをビニル袋に入 れ試験板フランジに密着さ せて冷却した。試験体の鋼 板の内部まで十分に冷やす ため加力前から 30 分程度冷 却し、載荷中も冷却し続け た。

4. 測定方法

変位の測定は、変位計を5箇所に設置して行った。加力 点に3箇所、支持点に2箇所とした。測定位置を図3中に 示す。全体中央変位δは以下の式で算出し、この値に基 づき載荷の変位の制御を行った。荷重は、アムスラー型 油圧万能試験機の荷重計により測定した。

 $\delta = D3 - (D1+D5) / 2$

温度は試験体フランジの表面および人工欠陥の切欠き 底に熱電対を取り付け測定した。

5. 応力拡大係数

クラックを持つ部材の強度や変形を取扱う分野として 破壊力学が多用される。本研究においても破壊力学パラ メータの一つである応力拡大係数 K を用いて、検証を試 みる。

本研究では、縁の一方に偏った位置にき裂(偏心き裂)を もつ帯板が一様に引張られる場合の応力拡大係数 K を用 いる。応力拡大係数 K は、下式により算出されることが 示されている³⁾。各試験体で a 寸法は同一である。従って、 形状係数 $F_{I,A}(\lambda, \epsilon)$ を比較することで、破壊のしやすさを相 対比較できるものと考えられる。なお、 $F_{I,A}(\lambda, \epsilon)$ は、文献 3) の早見表の数値を引用している。

表4に形状係数 $F_{I,A}(\lambda, \epsilon)$ および形状係数を算出するため のパラメータを示す。なお、端部からの距離 b1=10mmの 試験体 No.1 は、片側き裂と考え $F_{I,A}(\lambda, \epsilon)=2.0$ としている。

図 4 より、端部欠陥は中央欠陥 に対し指数関数的に $F_{I,A}(\lambda, \epsilon)$ の値が 大きくなり、破壊に敏感になるも のだと想定される。

** (一財)ベターリビングつくば建築試験研究センター・博士(工学)

図 3

試験装置

· () ~)

		<u>4</u> X 4	121/17	RSAX IFI, A	(Λ, ε)		
試験体No.	b	е	3	а	b1	λ	$F_{1A}(\lambda, \epsilon)$
1	50	40	0.8	10	10	1.00	2.0000
2	50	35	0.7	10	15	0.67	1.3460
3	50	30	0.6	10	20	0.50	1.1483
4	50	15	0.3	10	35	0.29	1.0507
5	50	0	0	10	50	0.20	1.0246

図4 形状係数 FLA(λ, ε)—端部からの距離関係

5. まとめ

1 1

1 A

b1

Ļ

 σ

B

き裂

その7では、実験方法ならびに応力拡大係数について示した。その8では、実験結果および考察を示す。

【参考文献】

- 日本建築学会:鋼構造建築溶接部の超音波探傷検査規準・同解 説:pp.107~111, 2018
- 2) アルムニフ サミル、服部和徳、見波進、笠原基弘:35 度開先面 に融合不良を有する接合部の繰返し載荷実験(その1~2),日本 建築学会大会学術講演梗概集,A-1,pp.1043-1046, 2015.9
- 3) 石田誠: 亀裂の弾性解析と応力拡大係数, 培風館, pp.146-147, 1976
- * Prof., School of Science and Eng., Tokyo Denki Univ., Dr. Eng.
- ** Tsukuba Building Test Laboratory of Center for Better Living, Dr. Eng.