CLT パネル工法の構造設計方法拡充・合理化に関する検討 その14 壁パネルの定軸力下面内曲げ実験

正会員	○佐藤 基志*1	同	三宅 辰哉*2
同	河合 直人*3	同	中島 昌一*4
同	車田 慎介*5	同	岡部 実*6

CLT パネル	定軸力	4 点曲げ実験
面内曲げ実験	終局耐力	

1.はじめに

本報では、CLTパネルの終局耐力評価方法の確認を目的 として実施した、CLT壁パネルの定軸力下面内曲げ実験に 関して実験概要および実験結果、考察に関して報告する。 2.実験概要

2.1 試験体概要

CLT 壁パネルの試験体を図1に示す。試験体は、表層ラ ミナ繊維方向と平行方向の長さ3600mm、直交方向の高さ 1094mm、厚さ150mm の CLT 壁パネルで、モーメントー 定区間での破壊を意図して中央部長さ方向1000mm は高さ 854mm とした。試験体高さをラミナ幅122mmの整数倍に することでラミナの切欠きを避ける形状とした。パネル の高さ方向中央には加力用の直径75mm 孔を1000mm 間隔 で設けた。CLT パネルの強度等級及びラミナ構成は、S90-5-5 である。

2.2 試験方法

実験は定軸力下での CLT 壁パネル面内曲げ実験である。 両側2支点の一方を固定、もう一方をローラーとし、中央 2点の加力点に片側をピン支持としたコの字型の加力治具 で鉛直荷重として曲げを作用させる三等分点二点載荷の 曲げ実験である。なお加力点及び支点は、加力用の孔の 両面に設置した厚さ 4.5mm の鋼板をビス(Xマーク金物 四角穴付きタッピンねじ STS・C65 片面72本)で緊結し補 強したうえで丸鋼を貫通させ、治具と接続した。曲げ加 力は、球座付き 2000kN 油圧ジャッキを用いて加力治具を 介して試験体中央に与えた。定軸力は、H 形鋼を用いた 3 体の治具で試験体と 1000kN 油圧ジャッキを交互に挟み、 最外部のH 形鋼相互を PC 鋼棒 (JISG 3109 A 種 2 号)4本 で緊結した状態で油圧ジャッキのシリンダーを伸ばすこ とで作用させた。定軸力は 1000kN 荷重計の出力を、荷重 変位自動制御システムで一定荷重となるよう制御した。

2.3 加力スケジュール及び計測計画

定軸力をパラメータとし、軸力 0kN と軸力 600kN の 2 ケースで各1体の計2体の試験を実施した。試験体への加 力は、はじめに所定の定軸力を単調加力で作用させ、そ の後曲げを作用させるための鉛直力を単調加力で作用さ

A study on expansion and improvement of the structural design method for CLT panel construction. Part 14: In-plane bending test of a wall panel under constant axial force. せた。荷重の計測は、定軸力、鉛直力共に油圧ジャッキ 先端に取り付けた 1000kN 荷重計で計測した。変位の計測 は加力治具中央の鉛直変位及び、試験体の鉛直変位を中 央部、加力点直下、支点直下で行った。また、ラミナひ ずみを試験体上面(以下、圧縮側)の平行層3点、表層ラ ミナ方向中央部で各ラミナ1箇所で7点、試験体下面(以 下、引張側)の平行層3点の計13点で計測した。図2に 加力装置への試験体設置状況及び計測機器配置を示す。

Motoshi SATO, Tatsuya MIYAKE, Naohito KAWAI, Shoichi NAKASHIMA, Shinsuke KURUMADA, Minoru OKABE

3. 実験結果

3.1 荷重-変位関係

図3に荷重-変位曲線を示す。荷重はロードセルの値、 変位は中央たわみとして式1)より算出した。なお、軸力 0kNは、1回目の加力時に加力治具の面外ねじれによりピ ン支点に支圧変形が生じたため、補強を施し2回目の加 力を実施し破壊した。なお、1回目と2回目では試験体の 上下を反転さて加力しており、以降1回目を正加力、2回 目を負加力と称す。軸力 0kN(正加力)は弾性的に最大荷重 =741.6kN まで上昇したところで加力治具変形により中 断、軸力 0kN(負加力)に関しても弾性的に最大荷重 =554.1kN に到達した後、引張側の破壊で荷重が低下し た。軸力 600kN は最大荷重=882.5kN に到達する前にやや 勾配が緩くなり引張側の破壊で荷重が低下した。

3.2 破壊性状

写真1及び写真2に破壊性状を示す。軸力0kN(負加力) ではフィンガージョイント部の引張破壊に起因する引張 側ラミナの引張破壊が、軸力 600kN では引張側ラミナの 引張破壊に加えて、圧縮側ラミナの圧壊が確認された。

3.3 実験結果と計算値の比較

図3に式2)により算出した計算値による最大荷重を示 した。基準強度 Fb=Fc とし本試験体と同マザーボードか ら採取した試験片の部分支圧試験による実態値と告示に よる公称値の2ケースで算出した。軸力0kN実験結果が 公称値を超え実態値には届かず、軸力 600kN は実験結果 が実態値を超える結果となった。今後の詳細検討が必要 であるが、フィンガージョイント等の欠損による耐力低 下、及び定軸力下での耐力上昇の影響が考えられる。

3.4 ひずみ分布及び中立軸位置の推移

図4にひずみゲージにより計測した特定荷重時のひずみ 分布を示す。縦軸を圧縮縁からの距離とし、ここでは軸 力 0kN(負加力)と軸力 600kN の結果を示す。両試験体共に 概ね平面保持の成立が確認可能であるが、軸力 600kN の ものは最大荷重時にパネル端部でのひずみの増加が確認 された。図5は特定荷重時の中立軸位置の推移を示したも のである。中立軸位置は図4に示す特定荷重時の各ひずみ 分布を直線近似した直線とひずみ=0(Y軸)との交点として 算出した。軸力 0kN(負加力)では中立軸位置は試験体高さ の中央付近で一定となっていることが確認された。軸力 600kN では荷重性に伴い中立軸位置が引張縁から試験体高 さの中央付近への移動が確認された。

4. まとめ

壁パネルの定軸力下面内曲げ実験に関して実験概要お よび実験結果の考察に関して報告した。

*1㈱日本システム設計 博(農)

- *2㈱日本システム設計 代表取締役 博(工)
- *3 工学院大学建築学部 教授 工学博士 *4 建築研究所構造研究グループ 主任研究員 博(農)
- *5 銘建工業㈱

 $M/(Z \times Fb) + N/(A \times Fc) = 1.0$

式2が成立持の荷重を計算Pmaxとした。ここで、

M:モーメント-定区間作用のモーメント =Pmax/2×1.0[kN・m] Z:断面係数=(150×854²)/6×10⁻⁹[m³]

A:有効断面積=150×854×10-6[m²] N:定軸力=0又は600[kN] Fb Fc:基準強度=実態值 26.78[N/mm²]、公称值 12.42[N/mm²]

フィンガージョイント引張破壊 a) 写真 1

破壊性状(軸力 0kN)

写真 2 破壞性状(軸力 600kN)

術開発支援等事業、CLT パネル工法の構造計算方法の拡充検討の-環として実施された。 関係各位に謝意を表する

- *1 Nihon System Sekkei Architects & Engineers Inc.Dr.Agr
- *2 President, Nihon System Sekkei Architects & Engineers Inc. Dr.Eng.
- *3 Professor, School of Architecture, Kogakuin University, Dr. Eng.
- *4 Senior Research Engineer, Dept. of Building Structure, Building Research Institute, Dr. Agr.
- *5 Meiken Lamwood Corporation, Ltd.
- *6 Tsukuba Building Research and Testing Laboratory Center for Better Living, Dr.Agr.

^{*6} ベターリビング つくば建築試験研究センター 担当部長 博(農)