防耐火構造の比較試験および性能評価の合理化に関する研究 強化せっこうボードの同等性確認試験 (その4)

正会員 ○野中 峻平*1 同 水上 点睛*2 同 長谷川 知哉*3

強化せっこうボード 小型炉 漏気量

遮熱性

1. はじめに

せっこうボードは、防耐火性能や遮音性能に優れる建 築材料として広く普及しており、平成 27 年度基整促 F3 (防火に関する大臣認定仕様の告示化の検討) 等でも主 要な防耐火被覆材として検討されている。その仕様に合 わせてこれまでにない厚さの 12.5mm・25mm の防水・防 カビせっこうボード(以下、GB-F(V)-S-MR という)が新 たに生産されるようになってきたため、前報で提案した 材料単体の遮熱性及び高温時収縮性同時測定試験方法を 用いて、強化せっこうボード(以下、GB-F(V)という)と の同等性の確認を行った。

2. 試験概要

加熱は、小型炉を用いて ISO834-1 に規定の加熱を行い、 非加熱側の目地部と一般部の温度測定および小型チャン バーを用いた漏気量の計測を行った(詳細は前報参照の こと)。試験体寸法は縦 910mm×横 910mm とし、前報で 報告した厚さ 15mm・21mm とは別に、12.5mm・25mm の 2 種類のボード厚のそれぞれについて、2 社 (A 社・B 社) で製造された、日本工業規格 (JIS A 6901²⁰¹⁴) で強化せっ こうボードに大別される 2 種類のボード (GB-F(V)および GB-F(V)-S-MR) 計 8 体を対象として試験を実施した。試 験体図を図1に、試験体一覧を表1に示す。

3. 試験結果およびその考察

加熱温度、漏気量および目地部・一般部裏面平均温度 を図2~図5に示す。加熱は各試験体とも標準加熱曲線に

よく一致している。遮熱性および高温時収縮性の評価に おいて、遮熱性については目地部・一般部裏面平均温度 が 140K 上昇した時間を、高温時収縮性については漏気量 が 20m³/h に到達した時間(到達時間が長いほど防火上優 れていると言える)を指標とした結果、GB-F(V)-S-MR の 方がすべての項目で GB-F(V)を上回ることが確認された (表 2 参照)。一例として加熱終了後の試験体①の状況を 写真 1 に示す。試験体中央に鉛直方向に設けた目地の加 熱後の幅は 9~13mm 程度であり、ボードの厚さ方向には 10%程度収縮していることがわかった。同じ厚さ・同じ製 造会社で比較すると GB-F(V)の方が面内方向、厚さ方向と もに収縮率が大きい傾向が見られ、その分漏気量が大き くなったと考えられる。

遮熱性および高温時収縮性の指標とした値について、 厚さ毎に平均値、標準偏差および変動係数を算出した (表3参照、前報15mm・21mmの結果も併記)。ばらつ きを示す変動係数は、遮熱性に比べ高温時収縮性の方が 高い傾向にあるが、高温時収縮性は、目地の隙間を拡大

表 2 所定温度および漏気量到達時間(min.)

t=12.5mm		A	社	B社		
		GB-F(V)	GB-F(V)-S-MR	GB-F(V)	GB-F(V)-S-MR	
遮熱性	目地部140K上昇時間	11.4	12.7	11.9	14.4	
	一般部140K上昇時間	15	17.1	15.5	17.8	
高温時収縮性	漏気量20m3/h到達時間	19.7	23.1	19.7	23.8	
t=25mm		A	社	B社		
		GB-F(V)	GB-F(V)-S-MR	GB-F(V)	GB-F(V)-S-MR	
遮熱性	目地部140K上昇時間	33.6	36.6	32.7	40.5	
	一般部140K上昇時間	42.8	46.1	41.5	48.7	
高温時収縮性	漏気量20m3/h到達時間	51.8	59.3	45.7	67.5	

表 1 試験体一覧

	含水率(%)	比重(g/m³)	
①GB-F(V)-S-MR(A社)12.5mm	0.2	0.76	
②GB-F(V)-S-MR(B社)12.5mm	0.3	0.79	
③GB-F(V)-S-MR(A社)25mm	0.1	0.75	
④GB-F(V)-S-MR(B社)25mm	0.4	0.76	
⑤GB-F(V)(A社)12.5mm	0.3	0.75	
⑥GB-F(V)(B社)12.5mm	0.1	0.75	
⑦GB-F(V)(A社)25mm	0.3	0.75	
®GB-F(V)(B社)25mm	0.1	0.75	

目地部(切断面突付け) 有効加熱範囲 350 目地部上側裏面温度 一般部上側裏面温度 П 200 目地部下側裏面温度 一般部下側裏面温度 350

試験体 (裏面温度測定位置) 図 1

加熱後状況(試験体①加熱面) 写真1

Study on rationalization in fire resistance test and its evaluation method (Part4) Testing for the performance evaluation of fire-resistant gypsum boards

NONAKA Shunpei MIZUKAMI Tensei HASEGAWA Tomoya する面内方向に加えて厚さ方向にも変化しており、またボード端部の切断形状など施工誤差も関係するためと考えられる。また図 6 に示すように前報も含めて、横軸に厚さ、縦軸に厚さの 2 乗に比例するであろう (所定温度および漏気量) 到達時間をとって整理すると、いずれも比例関係を得た。

4. まとめ

- ・2 種の強化せっこうボードに対し、小型炉による遮熱性 および高温時収縮性同時測定実験を実施した。
- ・厚さ $12.5 \text{mm} \cdot 25 \text{mm}$ では遮熱性および高温時収縮性ともに GB-F(V)-S-MR の方が若干ではあるが優れる結果となった。

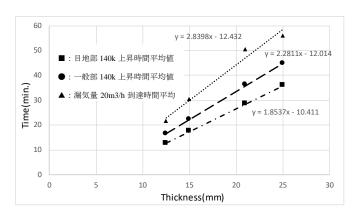
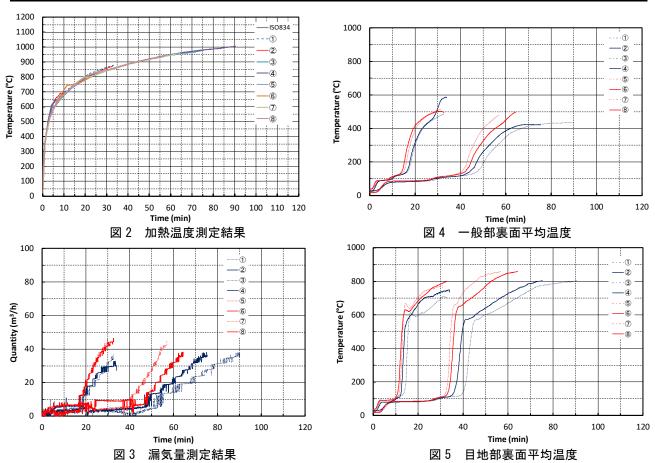



図6 厚さ-所定温度および漏気量到達時間関係

表 2 試験結果一覧

	遮熱性					高温時収縮性			
厚さ(mm)	目地部140K上昇時間			一般部140K上昇時間			漏気量20m3/h到達時間		
	平均值	標準偏差	変動係数	平均值	標準偏差	変動係数	平均值	標準偏差	変動係数
12.5	12.6	1.1	9.0	16.4	1.1	7.0	21.6	1.1	8.8
	[min]	[min]	[%]	[min]	[min]	[%]	[min]	[min]	[%]
15	17.6	0.8	4.4	22.2	0.6	2.6	30.6	1.5	4.9
	[min]	[min]	[%]	[min]	[min]	[%]	[min]	[min]	[%]
21	28.5	2.0	6.9	36.2	1.4	3.8	50.7	6.7	13.1
	[min]	[min]	[%]	[min]	[min]	[%]	[min]	[min]	[%]
25	35.9	3.0	8.5	44.8	2.8	6.3	56.1	8.2	14.6
	[min]	[min]	[%]	[min]	[min]	[%]	[min]	[min]	[%]

- *1 一般財団法人ベターリビング
- *2 国土交通省国土技術政策総合研究所·博士(工学)
- *3 吉野石膏株式会社

- *1 Center for Better Living
- *2 National Institute for Land and Infrastructure Management, Dr. Eng.
- *3 Yoshino Gypsum Co.Ltd.