35度開先面に融合不良を有する接合部の繰返し載荷実験

ーその6 端部欠陥の寸法・欠陥率の影響 実験結果および考察ー

正会員	○服部	和徳*1	成川	優也*2	見波	進*3
	宗川	陽祐*4	中野	達也*5		

開先面	融合不良	溶接欠陥
繰返し載荷	板厚・板幅	欠陥率

1.はじめに

その5では、繰返し曲げ載荷実験 計画および供試材の材料試験結果に ついて報告した。その6では、試験 結果およびその考察について報告す る。

2.試験結果

荷重-変形関係およびスケルトン 曲線を図1に示す。試験結果一覧を 表1に示す。スケルトン曲線は、全 塑性耐力 P_pおよび全塑性耐力時の 変位δ_pで無次元化している。

いずれの試験体も、欠陥先端から 延性亀裂が発生した。試験体 No.21 および試験体 No.26 は、延性亀裂が 進展して、延性亀裂先端から脆性破 壊をした為、試験を終了している。 その他の試験体は、延性亀裂の進展 に伴い荷重低下が認められたため、 試験を終了している。

	表 1 試験結果一覧																	
	No	欠陥	表面・	欠陥	欠陥	寸法(n	nm)	欠陥率	板厚	板幅	欠陥	欠陥	Pmax	δmax	2	2	2	破壊サ
	INO.	位置	裏面	角度	高さ	長さ	幅	%	mm	mm	高さ比	長さ比	kN	mm	a	Ells	ЕЦА	イクル
	1				1.2	100	0.4	4.80			0.05	1.00	387.5	45.38	1.79	16.4	61.3	+8
	2				2.5	28	0.4	2.80			0.10	1.12	392.5	45.60	1.81	16.1	61.7	+9
	3				5	14	0.4	2.80			0.20	0.56	397.2	45.76	1.83	16.5	57.9	+9
	4 中	中央	表面	35°	5	28	0.4	5.60			0.20	1.12	359.2	45.59	1.66	7.4	42.4	+8
$\hat{\boldsymbol{v}}$	5				10	23	0.6	9.20			0.40	0.92	346.7	34.00	1.60	9.1	35.7	+7
IJ	6				20	38	1	30.40			0.80	1.52	259.4	22.50	1.20	3.0	13.2	+5
	7		-		25	10	1	10.00			1.00	0.40	350.7	36.81	1.62	8.1	37.2	+7
ズ	8				2.5	14	0.4	1.40			0.10	0.56	397.1	45.60	1.83	21.3	78.5	+9
1	9	一 他 如 丰 西			5	7	0.4	1.40	25	100	0.20	0.28	402.3	49.76	1.85	20.1	82.2	+9
	10		表面	35°	5	14	0.4	2.80			0.20	0.56	381.7	45.53	1.76	17.5	49.9	+8
	11	>110 L1 1	次面	55	10	11.5	0.6	4.60			0.40	0.46	361.0	34.49	1.66	9.4	27.9	+6
	12				20	19	1	15.20			0.80	0.76	278.4	23.00	1.28	2.9	15.7	+5
	13		-		25	5	1	5.00			1.00	0.20	364.0	29.17	1.68	8.0	25.2	+6
37	14		表面	35°	10	10	0.6	4.00			0.40	0.40	371.5	46.73	1.55	10.5	32.2	+7
ij	15	端部	表面	0°	10	10	0.6	4.00			0.40	0.40	371.6	50.14	1.55	10.3	35.4	+8
í	16		底面	0°	10	10	0.6	4.00			0.40	0.40	382.8	49.24	1.60	13.9	44.3	+9
ズ	17		表面	35°	10	20	0.6	8.00			0.40	0.80	358.8	41.33	1.50	9.2	31.5	+7
2	18	中央	表面	0°	10	20	0.6	8.00			0.40	0.80	360.9	36.76	1.51	9.7	30.8	+8
	19		底面	0°	10	20	0.6	8.00			0.40	0.80	365.1	45.56	1.53	10.3	33.8	+8
	20			35°	6.4	6.4	0.5	4.00	16 25	64 100	0.40	0.10	172.2	41.16	1.65	13.2	51.3	+8
$\hat{\boldsymbol{v}}$	21		表面		10	10	0.6	9.77			0.63	0.16	146.9	20.59	1.41	4.5	14.0	+5
IJ,	22				8	8	0.6	4.00			0.50	0.08	253.7	33.58	1.61	12.3	35.3	+7
	23	3 端部			10	10	0.6	6.25		64	0.63	0.10	234.1	34.38	1.48	6.7	23.3	+6
	24				8	8	0.6	4.00			0.32	0.13	229.9	46.47	1.69	16.1	51.2	+9
5	25				10	10	0.6	6.25			0.40	0.16	219.8	37.70	1.62	12.5	48.9	+8
	26				10	10	0.6	4.00		100	0.40	0.10	351.1	38.83	1.67	16.9	33.2	+8

Pmax:最大荷重、δmax:最大変位(最大荷重の90%)、α(=Pmax/Pp):耐力上昇率

 $_{E^{n}b}(=Ws/Pp\times\delta p): スケルトン曲線によるエネルギーから算出した累積塑性変形倍率(正側:最大荷重値まで)$ $<math>_{E^{n}A}(=\Sigma Wi/(Pp\times\delta p)): バウシンガー域のエネルギー吸収を含む累積塑性変形倍率(正側:最大荷重の90%まで)$ $Ws: スケルトン曲線より算出したエネルギー、<math>\Sigma Wi; 実験から得られる全てのループのエネルギーについて足合わせたもの$ $P_p:全塑性荷重(計算値)、<math>\delta_{p}: 全塑性耐力時の変形量(計算値)、欠陥高さ/板厚、欠陥長さ比: 欠陥長さに欠陥長$ 金塑性荷重は、0℃における素材試験結果(下降伏点)を用いて算出している。

Cyclic loading test of joints with lack-of-fusion defect at 35 degrees groove face Part6: Influence of flange thickness and flange width Test Results and Discussion Hattori Kazunori, Narukawa Yuya, Minami Susumu, Sokawa Yosuke and Nakano Tatsuya

-9-

累積塑性変形倍率 $E \eta s$ 一欠陥率 $s \alpha$ 関係を図 2 に示す。 本研究では、累積塑性変形倍率 $E \eta s$ (以下、 $E \eta s$ と称す。) を用いて考察する。図 2 には、既往の実験結果であるシリ ーズ1 およびシリーズ 2 の実験結果(端部欠陥のみ)も併せ てプロットし、近似曲線も併せて示している。図 2 より、 欠陥率 $s \alpha$ が大きくなるにつれて、 $E \eta s$ が低下することが 確認できる。ただし、シリーズ 1、2 とシリーズ 3 の近似 曲線は同一曲線となっていない。また、試験体 No.23 と試 験体 No.25 の欠陥率 $s \alpha$ は 6.25%で同一であるが、 $E \eta s$ は 6.7(試験体 No.23)、12.5(試験体 No.25)で 2 倍程度の差があ った。従って、欠陥率 $s \alpha$ のみで、 $E \eta s$ を評価することは 難しいと考えられる。

3.考察

3.1 降伏比の影響

Ens-欠陥率 sα関係(降伏比の影響)を図3に示す。図3 に示すプロットは、降伏比が異なるものであり、板厚は 同一の25mmである。荷重一変形関係の比較を図4に示 す。図4に示す荷重一変形関係は、板厚、板幅は同一であ り、欠陥率もほぼ同程度であるが、降伏比が異なる試験 体を比較している。図3および図4より、降伏比が低い試 験体は、変形能力が高くなる傾向であり、一般的に知ら れている知見と同様の結果を得た。

3.2 板幅の影響

 $E\eta_s$ 一板幅の関係を**図 5** に、 $E\eta_s$ 一欠陥長さ比の関係を **図6**に示す。欠陥長さ比は、欠陥長さをフランジ幅で除し た値と定義した。**図 5** より、同一の欠陥率の場合、 $E\eta_s$ は、板幅の影響を受けることは少ない。また、**図6**より、 欠陥長さ比は、 $E\eta_s$ と相関が小さいことが分かる。

3.3.板厚の影響

 $E\eta_s$ 一板厚の関係を図 7 に、 $E\eta_s$ 一欠陥高さ比の関係を 図8に示す。欠陥高さ比は、欠陥高さをフランジ厚で除し た値と定義した。図7より、本実験の範囲において、同じ 欠陥率の場合、板厚が大きい程、 $E\eta_s$ は大きくなる傾向が あった。また、図8より、欠陥高さ比が大きくなるにつれ て $E\eta_s$ が小さくなる傾向が認められ、 $E\eta_s$ に与える影響と しては、欠陥長さ比より欠陥高さ比の方が大きいと考え られる。

4.まとめ

板厚・板幅が、欠陥を有する接合部の変形能力に与え る影響について繰返し曲げ試験により検討した結果、以 下について明らかとなった。

 ケ陥率 sαが同一であっても、累積塑性変形倍率 η sが 同程度にならないことがあることを実験的に確認して おり、欠陥高さと欠陥長さの単純な積で算出した欠陥

*1(一財)ベターリビングつくば建築試験研究センター・博士(工学) *2 東京電機大学大学院理工学研究科修士課程 大学院生

*3 東京電機大学理工学部建築・都市環境学系 教授・博士(工学)

*4(一財)ベターリビングつくば建築試験研究センター・博士(工学) (元宇都宮大学 大学院生) 率 s α のみにより変形能力を評価することは難しい。

- 累積塑性変形倍率 η s に与える影響は、欠陥長さ比より欠陥高さ比の方が大きい。
- 同じ欠陥率 sαの場合、降伏比が低い鋼材の方が、累 積塑性変形倍率 η sは高くなる傾向がある。

図2 $_{\rm E}\eta$ s 一 欠 陥 率 $_{\rm s}\alpha$ 関係

- *1 Tsukuba Building Test Laboratory of Center for Better Living, Dr. Eng.
- *2 Graduate Student, Graduate School of Science and Eng., Tokyo Denki Univ.
- *3 Prof., School of Science and Eng., Tokyo Denki Univ., Dr. Eng.
- *4 Tsukuba Building Test Laboratory of Center for Better Living, Dr. Eng. (Former Graduate Student, Utsunomiya Univ.)
- *5 Faculty of regional design, Utsunomiya Univ., Dr. Eng.

^{*5} 宇都宮大学地域デザイン科学部 准教授・博士(工学)