25 度狭開先ロボット溶接を適用した柱端接合部の性能評価

-その9 有限要素解析(その1)-

狭開先溶接	冷間成形角形鋼管	ロボット溶接
NBFW 法	ビッカース硬さ	有限要素解析

1. 序

本報ではビッカース硬さ試験結果とその7の引張試験 結果に基づき有限要素解析モデルの応力-ひずみ関係と その分布に関する材料特性を決定し,実大実験¹⁾を再現 する解析モデルを作成する.

2. 硬さ試験

図1にコラム材のビッカース硬さHvの測定位置を示し, 図2に硬さ試験結果を示す. コラム材では平板部から角 部板厚中央,外側・内側にかけて Hv が上昇しており,引 張試験結果と同様に冷間加工に起因する傾向がみられる.

3. 引張特性と硬さの関係

図3に引張特性と硬さの関係を示す. 強度と伸びは相 関があることが知られている.公称降伏応力度 σ_y ,公称 引張強さ σ_u について、図 3(a), (b) 中にプロットした試験 結果を最小二乗法により次の近似式が得られる.

準会員() 玉置 祐也	* 1	正会員	宗川 陽祐	* 2
正会員	中野 達也	* 3	同	見波 進	* 4
同	服部 和徳	* 5	同	増田 浩志	* 6

代入することで HAZ の σ_y , σ_u の推定値が得られる. $\iota \varepsilon_u$ について、図 3(c) より σ_y , σ_u と同様に相関が認められる が, DEPO については近似式と差が生じている. このため, 文献 2) 式の傾きを援用して溶着金属(以下, DEPO)を 通過する次式により、HAZの ℋuを推定する.

 $t \varepsilon_u = -0.078 Hv + 30.6$

(3)

4. 解析概要

4.1 解析モデル

解析モデルは実大実験¹⁾における試験体 No.1~3 につい て, 脆性破壊の起点となったコラム角部の溶接部性状を再 現するものとする.図4に解析モデル形状およびコラム 角部溶接部近傍の要素分割状況を示す. 解析モデルは対 称性を考慮する 1/4 モデルであり、加力方向は実験と同様

Center of flat section

Evaluation for structural performance of column-end robotic welded connection using 25 degrees narrow groove - Part 9 Finite element analysis (Part 1) -

TAMAKI Yuya, SOKAWA Yosuke, NAKANO Tatsuya, MINAMI Susumu, HATTORI Kazunori, MASUDA Hiroshi

に 45 度方向である. コラム材□-550×550×32 (BCP325, BCP325T), せん断スパン 2000mm, ダイアフラム材 PL-36 (SN490C) とし, 柱上部およびダイアフラム端 面を図芯位置で剛体リンクを行いローラー支持としたう えで強制変位を与える 3 点曲げ実験を再現している. 溶 接部形状については加力前に実施した計測結果, 溶接部 の溶け込み寸法および HAZ 幅についてはマクロ試験結果 ¹⁾に基づき決定している. 最小要素寸法は止端部近傍で 0.3×0.3×0.3mm³に統一している.

4.2 材料特性

図5に解析モデルに反映する真応力 σ – 真ひずみ ε 関係を示す. コラム材および DEPO については前報その 7 で示した引張試験結果を多直線近似したものである. HAZ については前章で推定された σ_y , σ_u , ε_u により, ヤ ング係数 E=205000 N/mm² として曲線部を次式³⁾で補完 したうえで多直線近似したものである.

$$t\sigma = \frac{E}{a/t\varepsilon + b} \tag{4}$$

4.3 解析仮定

解析は、汎用弾塑性有限要素解析ソフト「ADINA ver.9.1」による三次元立体要素を用いる弾塑性解析であ る. von Misesの降伏条件、塑性域における構成則は等方 硬化則、ポアソン比を 0.3 とする.

5. 再現性の検証

図6に材端作用モーメントMとコラム部材角Rの関係

を示す.実験結果¹¹と比較すると,耐力に関しては塑性化 以降で解析結果は実験結果をやや下回っている.これは, 繰り返しによる耐力上昇に加え,解析ではコラム角部の板 厚表層付近の強度分布を再現していないことが要因とし て考えられる.ただし,弾性剛性はほぼ実験結果と一致し ており,本研究では解析モデル間の力学性状の比較を行う ことを目的としていることから,再現精度としては問題が ないものと考えられる.

6. 結

本報では解析概要および結果の一部を示した.

参考文献

- 1) 見波進,服部和徳,宗川陽祐,中野達也,早坂和美,増田浩志,本宮弘大: 25 度狭開先ロボット溶接を適用した柱端接合部の性能評価-その1~5, 日本建築学会大会学術講演会梗概集,材料施工,pp.1155-1164,2016.9
- 2) 桑村仁, 松本由香: 熱サイクルを受けた 800MPa 鋼の破壊特性, 日本建築学会構造系論文集, 第 484 号, pp.101-109, 1996.6

^{*1} 宇都宮大学工学部 学部生,*2 宇都宮大学大学院工学研究科 大学院生・ 修士(工学),*3 宇都宮大学地域デザイン科学部 准教授・博士(工学),*4 東京電機大学理工学部 教授・博士(工学),*5 一般財団法人ベターリビング つくば建築試験研究センター 博士(工学),*6 宇都宮大学地域デザイン科学 部 教授・博士(工学)

^{* 1} Undergraduate student, Faculty of Eng., Utsunomiya Univ., * 2 Graduate student, Graduate school of Eng., Utsunomiya Univ., M. Eng., * 3 Assoc. Prof., Faculty of regional design, Utsunomiya Univ., Dr. Eng., * 4 Prof., School of Science and Eng., Tokyo Denki Univ., Dr. Eng., * 5 Tsukuba Building Test Laboratory of Center for Better Living, Dr. Eng., * 6 Prof., Faculty of regional design, Utsunomiya Univ., Dr. Eng.