最下層柱中間部浮き上がり架構の簡易モデルによる地震応答 その1 架構モデルの解析

正会員	○麻里 哲広*1	同	小谷 直人*2	同	緑川 光正*3
同	岡崎 太一郎*4	同	石原 直*5	同	小豆畑 達哉*6

鉄骨構造	柱中間部浮き上がり	応答解析
簡易モデル	鋼材ダンパー	ロッキング架構

1.はじめに

地震時に上部構造が浮き上がることで上部構造への被 害が低減される場合があるという指摘^{例えば1)}を基に、意図的 に上部構造の浮き上がりを許容し、かつ浮き上がり部でエ ネルギーを吸収するロッキング架構が提案されている^{例え} ^{ば2)}。本報告その1では、架構最下層の柱中間部の浮き上が り(Colum Mid-height Uplift、以下 CMU という)を意図的に 許容し、かつこの位置にダンパーを組みこむ架構(以下 CMU 架構)及び浮き上がり機構のない通常の架構(以下 MF 架構)を対象に地震応答解析を行い、浮き上がりの有無が上 部構造のエネルギー応答等に及ぼす影響を検討する。

2. 解析モデル

解析には汎用弾塑性解析プログラム³⁾を用いた。架構モデ ルは図1に示す10、6、4層(それぞれ塔状比5.04、3.07、2.08)の 平面鉄骨架構であり、梁降伏先行型となるよう設計した。柱 と梁には材端にトリリニア型の塑性ヒンジを組み込み、材料 の降伏応力度は294 N/mm²とした。各階の質量は29.3tとし た。すなわち、各階毎に節点を柱梁接合部及び梁中央の3個 所に設け、柱梁接合部節点の質量を7.33t、梁中央節点の質 量を14.7tとした。

減衰はレーリー減衰とし、1次、2次モードに対する臨界 減衰比をそれぞれ2%とした。ただし、浮き上がり部分の減 衰は0とした。

CMU 機構の挙動を表すために、1 層柱中間部に(a)バイリ ニア弾塑性要素、(b)引張方向には抵抗せず圧縮剛性が高い コンタクト要素、(c)せん断力を伝える要素、を設定し た(図 2)。バイリニア要素(a)の剛性は CMU 架構への適用を 想定したダンパーの実験結果⁴⁾に基づき、初期剛性は1 層柱 軸方向剛性の10%、降伏後2次剛性比は引張側で1次剛性 の3%、圧縮側で1%とした。また、バイリニア要素の降伏 耐力の和が上部構造重量の30%となるようにした。コンタ クト要素(b)の圧縮剛性は最下層柱の軸剛性の10倍とした。 せん断要素(c)の剛性は、最下層柱と同断面で、高さ150mm の部材のせん断剛性と等しくなるように設定した。また、こ の CMU 架構の他、比較のために、浮き上がり機構がない MF 架構、CMU 機構からダンパー機能である(a)バイリニア要素 を除いた架構(以下 CMU-ND という)、MF 架構の1 層柱中 間部をピンとした架構(以下 CMP という)についてもそれぞ

入力地震動は表1に示す17記録を用いた。水平方向PGV が最大となる方位を求め、そのPGVが1.0m/s及び1.25m/s になるよう規準化し用いた。ロッキング架構において、地震 動の上下動成分による影響は小さいと判断し⁵、上下動成分 を無視した。

3. 解析結果

れ解析を行った。

表2に各架構モデルの固有周期を示す。浮き上がり時の モード解析は1層柱の片方をCMU-ND、他方をCMPとし て行った。

図3にAi分布の静的増分解析により得られたベースシア 係数C_Bと架構頂部水平変形角θの関係を示す。10層モデル の浮き上がり開始時点のベースシ係数はCMP架構の降伏時 表1地震動 表2架構モデル

25	Year	Event	Station	固有周期 (単位:s)					
~ 20	1966	Parkfield	Temblor pre-1969						
$\times 20$	1968	十勝沖地震	八戸		層数	10層	6層	4層	
~ 24	1978	宮城県沖地震	Tohoku	摧	1次	1.358	0.867	0.601	
	1979	Imperial Valley-06	El Centro Array #7	影	2次	0.464	0.271	0.177	
<19	1979	Imperial Valley-06	Aeropuerto Mexicali	1F	31/2	0 249	0.145	0.080	
25	1980	Mammoth Lakes-01	Convict Creek	~	51	0.247	0.145	0.007	
20	1980	Mammoth Lakes-01	Long Valley Dam	鹣	1次	1.371	0.881	0.65	
	1984	Morgan Hill	Gilroy Array #2	影	a 14				
	1986	Palm Springs	Morongo Valley	1E	2次	0.468	0.274	0.182	
/	1987	Superstition Hills-01	Wildlife Liquefaction Array	5	3次	0.25	0.145	0.107	
	1989	Loma Prieta	Capitola						
/	1994	Northridge-01	Tarzana - Cedar Hill A	些	1次	-			
	1994	Northridge-01	Santa Monica City Hall	65					
0	1995	Kobe, Japan	JMA Kobe	Q 1	2次	0.476	0.322	0.309	
	1999	Chi-Chi, Taiwan-03	CHY028	*					
要素	2000	Tottori, Japan	TTRH02	雪	3次	0.291	0.255	0.174	
	2004	新潟県中越地震	山古志			1			

Earthquake Response of Steel Frames Allowing Column Mid-Height Uplift at the First Story Based on Simplified Models (Part 1: Dynamic analysis of frame model) KOTANI Naoto et al.

のベースシア係数の 64% であり、6 層モデルでは 70%、4 層 モデルでは 87% となる。

CMU 架構、CMU-ND 架構の最大頂部水平変位及び浮き上 がりによる剛体回転成分を除いた最大頂部水平変形を MF 架構と比較したものを図 4 及び図 5 に示す。図中の破線は 縦軸と横軸が同じ値となることを示す。浮き上がることで上 部構造の変形が MF 架構に比べて低減される。また、浮き上 がることで最大頂部水平変位は増加するものの、CMU 架構 ではダンパーの効果で最大頂部水平変位の増加は抑制され る。

塑性変形により蓄積された上部構造歪エネルギーを CMU 架構または CMU-ND 架構と MF 架構で比較したものを図 6 に示す。CMU 架構に蓄積された上部構造歪エネルギーは 102 ケース中 95 ケースにおいて MF 架構よりも低減される。 また、浮き上がることによる上部構造歪エネルギーの低減効 果は塔状比の最も大きい 10 層モデルで大きい。

*6 建築研究所 上席研究員・博士(学術)

図7にCMU架構、CMU-ND架構における最大頂部水平

加速度を MF 架構と比較したものを示す。最大頂部水平加 速度に大きな相違はみられなかった。

3. まとめ

1)杭頭浮き上がり建物や柱脚浮き上がり建物の場合の指摘 と同様に、ロッキング振動に伴い浮き上がりが生じると、 頂部水平変位は増加するものの上部構造の変形が抑えら れる。

2)CMU 機構に組み込まれる履歴ダンパーには浮き上がり により増加する頂部水平変位を抑制する効果がある。

3)浮き上がりにより、最終的に蓄積される上部構造歪エネ ルギーが低減される。この低減効果は塔状比の大きい10層 モデルで特に大きい。

【謝辞】本研究の一部は日本学術振興会科学研究 費(25289177)の助成を得た。ここに謝意を表する。

【参考文献】

 林康裕:直接基礎構造物の浮上りによる地震被害低減効果, 日本建築学会構造系論文集,第485号,pp.53-62,1996.7

2) 緑川光正,小豆畑達哉,石原直,和田章:地震応答低減のためベ ースプレートを浮き上がり降伏させた鉄骨架構の動的挙動,日 本建築学会構造系論文集,第 572 号,pp.97-104,2003.10

3) MIDAS IT Co., Ltd.: Analysis & Design, MIDAS/Gen ver.845, 2015

4) 加藤百合子,緑川光正,河合良道,石原直,松本博樹:鋼材ダン パーを組み込んだ柱中間部浮き上がり機構の静加力実験,鋼構 造年次論文報告集,第22巻,2014.11

5) 緑川光正,須藤智文,麻里哲広,小豆畑達哉,石原直:ベースプ レート降伏により柱脚浮き上がりを許容した10層鉄骨架構の 3 次元地震応答,日本建築学会構造系論文集,第 637 号, pp.495-502, 2009.10

*1 Asst. Prof., Faculty of Eng., Hokkaido Univ., Dr. Eng.
*2 Tsukuba Building Research and Testing Laboratory Center for Better Living (Formerly Graduate Student of Hokkaido Univ.)
*3 Prof. Emeritus., Hokkaido Univ., Dr. Eng.

- *4 Assoc. Prof., Faculty of Eng., Hokkaido Univ., Ph.D.
- *5 Senior Research Engineer, Building Research Institute, Dr. Eng.
- *6 Chief Research Engineer, Building Research Institute, Ph. D.