熱交換換気設備の回収熱量に関する研究

その2 暖房期間の回収熱量と年間消費電力

正会員○清水則夫*1、正会員 澤地孝男*2、正会員 村田さやか*3、正会員 堀尾岳成*4 大嶋兼芳*5、正会員 森本晋平*6、正会員 齋藤茂樹*3

熱交換器 回収熱量 消費電力

1. はじめに 換気システムが導入された建物で 空調時に排気する空気のエネルギーを室内へ取り入 れる外気に移し替えると空調エネルギーの削減にな るため熱交換型換気システム(以降、熱交換器)が 使用される。熱交換器は圧力損失が大きく能力の高 い送風機が必要となり消費電力が大きくなるため、 省エネを図るには、一般的な換気を行う場合よりも 増加した消費電力を上回る熱量を回収する必要があ る。本研究では、冬季暖房時の熱交換器による回収 熱量を実験住宅で実測し、そのデータより日本各地 での回収熱量を試算したので、その概要を報告する。 2.研究方法 2.1 研究方法の概要 実験は以下 の手順により行った。①市販されている全熱交換器 の中で比較的交換効率の高い製品の温度交換効率・ 湿度交換効率・全熱交換効率と有効換気量率を JIS B 8628:2003「全熱交換器」の付属書4 (規定) 熱 交換効率測定方法 (2室方式)と JRA 4056:2006「全 熱交換器 有効換気量試験方法」により測定する。 ②試験により性能が明らかになった全熱交換器を旭 川にある実験住宅に設置し冬季暖房時の回収熱量を 測定する。③得られたデータから日平均外気温度と 回収熱量の関係を求め、日本各地での回収熱量を試 算し、暖房期間における回収熱量と熱交換器の年間 消費電力を比較検討する。

2.2 回収熱量の測定方法 実験は 2 階建て住宅 (床面積 1 階 62.93 ㎡、2 階 57.14 ㎡)を 1 台の熱交換器で換気を行うことを想定して実施した。実験住宅には2種類の全熱交換器(試験体 M と D: DCモーター仕様)を設置し、OA・SA・RA・EA 系統

の風量と温湿度、室内外の温湿度を測定した。測定結果から熱交換器使用時と未使用時の屋外への排出エネルギーを(熱交換器使用時 E_1 、未使用時 E_2 : kJ/h)を求め、回収量 $\triangle E = E_2 - E_1$ 、(kJ/h) と回収率 $\mathbf{r} = (E_2 - E_1) \div E_2$ (%)を算出した。測定の詳細と排出エネルギーの算出方法は別報 1 による。

3. 測定結果 JIS と JRA の試験方法に準じて測定した試験体 M と D の性能を表 1 に示す。

実験住宅での測定は、2014 年 10 月 27 日~2015 年 2 月 9 日まで実施し、1 分間隔で測定した温湿度と風量を 1 時間ごとに平均し、回収エネルギー量を算出した。1 日平均の室内外の温湿度を表 2 に示す。室内の温湿度は、設定値(20 \mathbb{C} 、40 %)と比較すると湿度が低めであった。日平均外気温度は-14.0 ~ 11.7 \mathbb{C} と広い範囲のデータを得ることができた。

熱交換器の1日の消費電力、JIS B 8628:2003「全熱交換器」に準じて求めた温度交換効率 η t・湿度交換効率 η x・全熱交換効率 η i と回収エネルギー量で算出した温度回収率(r SH)・全熱回収率(r TH)を表3に、熱交換器の各系統の風量を表4に示す。

暖房時間を $6:00\sim9:00$ 、 $18:00\sim23:00$ の 8 時間(以後、間欠暖房という)とし、この時間帯に回収した熱量を間欠暖房時の回収量とした。

1日の平均外気温度と回収熱量(全室 24 時間暖房・全室間欠暖房)の関係を求めた。試験体 D の結果を図 1に示す。図中の回帰式と平成 26 年理科年表の各地の気温の月別平年値(1981~2010年平均値、表 5)から各地における回収熱量を算出した。実測データの範囲内での評価を行うため表 2 の外気温度の

表1 試験体の性能値

測定条件		冷房	条件	暖房条件				
	試験体M							
E = (3 a)	SA	106	156	103	164			
風量(m³/h)	RA	100	174	111	185			
温度交換効率(%)		57	50	63	55			
湿度交換効率(%)		18	10	28	20			
全熱交換効率(%)		27	19	48	40			
有効換気量率:97.2%								
		試験	体D					
風量(m³/h)	SA	146	245	170	273			
	RA	142	253	170	267			
温度交換効率(%)		79	78	89	87			
湿度交換効率(%)		76	72	80	74			
全熱交換効率(%)		77	73	85	82			
有効換気量率:87.8%								

表 2 室内外の温湿度

	室	内	室外		
	温度	相対湿度	温度	相対湿度	
	(℃)	(%)	(℃)	(%)	
平均	19.9	36	-1.8	73	
最大	22.1	49	11.7	96	
最少	17.7	11	-14.0	56	

表 4 熱交換器の各系統の風量(m³/h)

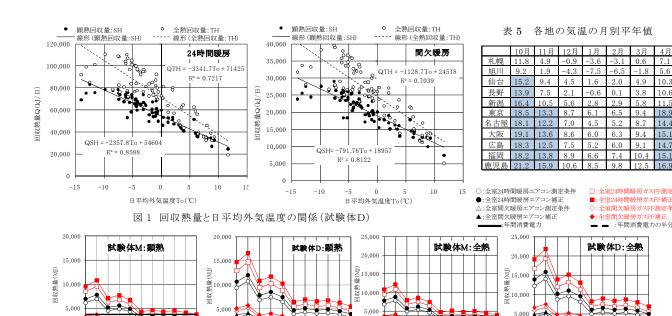

	試験体M				試験体D			
	OA	SA	EΑ	RA	OA	SA	EA	RA
平均	175	178	204	174	145	152	179	170
最大	187	190	224	188	169	177	215	185
最少	122	128	181	152	98	117	154	161
標準偏差	12	12	10	7	11	10	11	4

表 3 熱交換器の交換効率・回収率と消費電

		準じて求 交換効率		回収熱 算出し	消費 電力				
	ηt	ηх	ηi	r_{SH}	r_{TH}	(W)			
	試験体M								
平均	49%	19%	42%	40%	35%	44			
最大	68%	38%	77%	44%	43%	49			
最少	41%	9%	33%	33%	27%	39			
標準偏差	5%	4%	7%	3%	3%	3			
	試験体D								
平均	92%	78%	89%	65%	63%	39			
最大	96%	94%	96%	68%	67%	40			
最少	89%	20%	84%	52%	51%	38			
標準偏差	2%	9%	2%	3%	3%	0			

A Study on the Recovery Heat Capacity of Heat Exchange Ventilation Installation Part II Recovery Heat Capacity in Heating Season and Annual Power Consumption

SHIMZU Norio and et

札 旭 仙 長 新幌 川 台 野 潟

暖房期間の回収熱量と年間消費電力

大島岡児

一部 ン使 量で ギー たが、全熱の回収熱量

札 旭 仙 長 新 東 名 古 届 麗児皇

表 6 国 量 比 レ な 挽 効 率 140

3.1

2.0 49

0.1

29

6.0 9 1 14.7

8 7 14.4

9 4 15.1

10.4

全室間欠暖房ガスFF測定条件

:年間消費電力の半分

7.1

5.6

10.3

10.6

11.5

7の声が 114 エーマー	表も 風量れこ人!					5 M —		
『の寒冷地でエアコ			試験体M		試験体			
用時に顕熱回収熱	JIS法 交換効率	OA-SA RA-EA	46% 42%	46% 46%	92% 68%	. 8		
年間の運転エネル	回収	.率 OA	41% 180	46% 180	65% 144	7		
-の 50%を下回っ	風量(m³/h)	SA EA	183 200	185 181	150 182			
		RA	171	156	171]		

では上回ることが示された。試験体Dは全熱では間

欠暖房でもほとんどの地域で運転エネルギーの

50%を上回ることが示された。試験体 D には熱交換 モードと換気モードがあり、換気モードの消費電力

が約4W少ないため、一次エネルギーで月28MJ省

エネとなる。試験体 D は、JIS 法での交換効率と回

札旭仙長新

東京 大阪

外気温度を求めると試験体 M は 16.3℃、試験体 D は17.3℃となる。暖房運転時は回収熱量が消費電力 (50%) を上回るといえる。 測定条件には①室内の設定温度が 20℃と実際の 生活時の温度より低く、②両試験体とも OA、EA の 風量バランスが悪いという、回収熱量を低下させる 要素がある。この点を補正するため①設定室温を 22℃とした時の回収熱量を図1の回帰式で外気温度 が 2℃低い時をその地域の外気温度として計算した。 また、②風量バランスをそろえた状態では回収率が 5%アップする結果が得られた(表 6)ので風量比を そろえた状態では回収量が 5%アップするものとし て暖房時の回収熱量を補正した。測定状態で得られ た回収熱量とこの2点の補正を行って得られた回収 熱量(当該暖房期間)と1年間の運転一次エネルギ ーを図2に示す。24時間暖房では、どの地域でも両 試験体とも暖房期間での回収熱量が年間の運転エネ ルギーの 50%を上回った。間欠暖房で試験体 M は

札旭仙長新東名幌川台野潟京古

大店福度

測定範囲を下回る時期を暖房期間(表5白抜き欄)

として各地で回収される熱量を求めた。1次エネル

ギー効率をエアコン 1.1、ガス FF 暖房 0.8 として回

収熱量に相当する一次エネルギーを算出した。熱交

換器を1年間運転するのに必要な一次エネルギーは、

消費電力と換算値 9760kJ/(kW・h)から求めると試

験体 M は 3730MJ、D は 3342MJ であった。測定

に使用した熱交換器が2モーター2ファンのため第

3 種換気システムを使用した時より増加する年間消 費エネルギーをこの 50%として回収熱量と比較す

ることにした。ガス FF 間欠暖房(実測条件)で図

1の回帰式から消費電力の50%を回収できる日平均

収熱量で求めた効率に大きな差がある(表3)。交換 効率は風量バランスが崩れると変化するので、風量 バランスをそろえた状態で比較した(表 6)。回収熱 量は、OA、RA、EA 空気のエネルギーから算出す のに対して、JIS 法では OA、RA、SA 空気のエネ ルギーから交換効率を算出する。JIS 法で RA-EA 系統の交換効率を求めると回収率とほぼ合致した。 本報で行った排出エネギーを用いた回収熱量と比較 するには RA-EA 系統の交換効率を示す必要がある 冬期の間欠暖房時に熱交換器の回収 4. まとめ 熱量が 1 日の消費電力の 50%を上回ることが確認 された。暖房時には、実測結果の外気温度の範囲を 暖房期間とした時、寒冷地では、DC モーターで性 能の良い熱交換器を使用すると当該暖房期間の回収 熱量で1年間の運転エネルギー(50%)を賄うこと が示された。今後は、暖房期間の短い温暖地での評 価を行うため、暖房期間の設定、夏期における回収 熱量等を検討することが必要と考える。 参考文献:清水他:熱交換型換気設備の回収熱量に関する研 日本建築学会大会学術講梗概集 pp.1293-1294、2014.9

^{*1: (}一財) ベターリビング、博士(工学) *2: 国土交通省国土技術政策総合研究所、

工学博士

^{*3:}北海道立総合研究機構 北方建築総合研究所、博士(工学) . リビンク

^{*4:(}一財)ベタ : 三菱電機 ((株))

^{*6:}東プレ(株)

Center for Better Living,

^{*2:} National Land Management Research Institute Ministry of Land, Infrastructure & Transport,

^{*3:} Hokkaido Research Organization, Northern Regional Building Research Institute, Dr. Eng.

^{*5:} Mitsubishi Electric corporation, *6: Topre corporation