アルミブレースを用いた RC 架構補強構面の正負繰返し載荷実験 (その1 実験概要)

アルミブレース	耐震補強	外付け工法
枠付き補強	圧着補強	

1. はじめに

現在、既存鉄筋コンクリート造建物(以下、既存 RC 架 構)の耐震補強が、公共建築物を中心に進められている。 本実験で対象としたアルミニウム合金製ブレース(以下、 アルミブレース)は、既存 RC 架構の外側に直付けする耐 震補強部材である。これまで、アルミブレース単材の力 学特性に関する研究¹⁾²⁾は行われてきたものの、アルミブ レースを用いて補強された RC 架構の補強効果は確認され ていない。

本研究では、アルミブレースを RC 架構に外付けした場 合の補強効果を明らかにすることを目的とし、RC 架構補 強構面の面内せん断実験を行った。

2. 供試体の概要

表1にRC架構部分の供試体概要を、表2にRC架構部 分に使用した材料の機械的性質を示す。実験に用いた RC 架構は、中低層 RC架構を想定した1/2モデルの1層1ス パンフレームである。RC架構は、スパンL×階高 H が 3000mm×1750mm で、柱幅 b×柱せい D が 400mm×300 mm である。RC 架構の破壊形式は、柱の主筋量及び帯筋 量を変化させ、せん断破壊先行型と曲げ破壊先行型の2 種類とした。RC架構の柱及び梁に打設したコンクリート は、圧縮強度が 14.7N/mm²~15.8N/mm² で、実験の載荷日 に測定した数値である。

表 3 に補強部分の供試体概要を、表 4 に補強部分に使 用した材料の機械的性質を示す。図1 にアルミ合金の応 カーひずみ関係を、図2に各供試体の概要図を示す。せ ん断破壊先行型の RC 架構は、ブレースの材質に降伏比が 高い A7003-T5 を使用し、強度型の補強とした。曲げ破壊 先行型の RC 架構には、ブレースの材質に降伏比が低い A5083-O を使用し、靭性型の補強とした。アルミブレー スの管径と肉厚はφ100×6.0t、フォークエンドの材質は A7003-T5 で、各供試体で変わらない。補強形式は、枠付 きタイプと圧着タイプの2種類である。枠付きタイプは、 あと施工アンカーとアルミスタッドで構成される間接接 合部を介し、ブレース架構を RC 架構の面外に接合した。 間接接合部には、無収縮モルタルを充填した。圧着タイ プは、アルミ耐圧板を PC 鋼棒で RC 架構に圧着接合した。 供試体は合計 5 体で、このうちブレースに A7003-T5 を用 いた供試体が2体、ブレースにA5083-Oを用いた供試体 が1体である。

正会員	\bigcirc	古川 宏典*1	同	南 伊三男*4
同		大久保 昌治*2	同	中野 克彦*5
同		小澤 潤治*3	同	藤本 効*6
同		渡邉 高朗*3		

表1RC架構	分の供試体概要
--------	---------

/++ =++ /+-	7 °		RC架構 柱				
供訊1体			主筋		帯 筋		(収場) 形式
ትፓ ጥን	旧同口	せいD	配置	主筋量Pg	配置	带筋量Pw	ЛУIL
S-N	1 3000	b400	0.010	1.01	D.C@000	0.00	LINT
S-F	×	×	8-D19 (SD345)	⊺.9⊺ Г%]	D6@200 (SD205A)	0.08 Г⊮]	せん町 失行刑
S-P	H1750	D300	(30343)	[/0]	(30233A)	[/0]	九门主
B-N			8-D13	0.85	D6@75	0.21	曲げ
B-F	[mm]	[mm]	(SD345)	[%]	(SD295A)	[%]	先行型

表2RC 架構に使用した材料の機械的性質							
供試体	部 位	材 啠	降伏強度	引張強さ	破断伸び	ヤング率	
呼 称	1 F	P R	$\sigma_{\rm y}[{\rm N/mm}^2]$	$\sigma_u[N/mm^2]$	ε[%]	E[N/mm ²]	
S-N,F,P	D19	SD345	397.3	592.7	24.0	1.64×10^{-5}	
B-N,F	D13	SD345	387.3	562.0	23.7	1.78×10^{-5}	
全て	D6	SD295A	342.3	535.3	28.0	1.92×10^{-5}	
供試体	種類			圧縮	強度		
S-N				σ _B = 14.	9 N/mm²		
S-F				σ _B = 15.	8 N/mm ²		

表3 補強部分の供試体概要

 $\sigma_{\rm B} = 14.7 \ {\rm N/mm^2}$

 $\sigma_{\rm B}$ = 15.2 N/mm²

 $\sigma_{\rm B} = 15.3 \ {\rm N/mm^2}$

柱・梁コンクリート

S-P

B-N

B-F

供試体	補強	アノ	レミブレー	ス	この他提式部計		
呼 称	形式	サイズ	材質	細長比	ての他構成部材		
S-N		-	_		_		
S-F	枠付	φ 100 × 6.0t	A7003	λ 47.5	フォークエンド(A7003-T5) あと施エアンカー 2-D16@150 アルミスタッド 2- φ 16@150 アルミ枠 H-200×100×14/8		
S-P	圧着	[mm]	15	λ 55.2	フォークエンド(A7003-T5) PC鋼棒 4- <i>ф</i> 23(B種) アルミ耐圧板 t25		
B-N		-	-	-	—		
B-F	枠付	φ 100 × 6.0t [mm]	A5083 -O	λ 47.5	フォークエンド(A7003-T5) あと施エアンカー 2-D16@150 アルミスタッド 2- φ 16@150 アルミ枠 H-200 × 100 × 14/8		

表4 補強部分に使用した材料の機械的性質								
供試体	部 位	材 啠	0.2%耐力	引張強さ	破断伸び	ヤング率		
呼 称	비미	们员	$\sigma_{\rm y} [{\rm N/mm}^2]$	$\sigma_u [N/mm^2]$	ε[%]	$E[N/mm^2]$		
S-F,P	ブレース	A7003-T5	297.4	342.7	17.8	7.36×10^{-4}		
B-F	ブレース	A5083-O	130.8	310.7	28.2	7.07×10^{-4}		
供試体	種	類						
S-F	間接	接合部		$\sigma_B = 34.7 \text{ N/mm}^2$				
B-F	無収縮	モルタル		$\sigma_{\rm B}$ = 61.1 N/mm ²				
供試体 名称 S-P 一 RC架構 S:せん	補強形 N:補強 F:枠付 転 新先行 E	:式 魚無し き P:圧売 た 3:曲げ先行	「 2000 音 1 ア 1 ア	0 10 ルミ合金の	7003-T5 7003-T5 20 20 の応力-て	5083-0 <i>▶ずみε[%</i>] 30 ♪ずみ関係		

Cyclic Loading Test of Reinforced Concrete FrameFURUKAWA Hironori,OKUBO Shoji,OZAWA Junji,WATANABE Takaakiwith Aluminum Brace (Part1.Outline of Tests)MINAMI Isao,NAKANO Katsuhiko,FUJIMOTO Isao

3. 実験方法

図 3 に載荷装置図を示す。供試体は、RC 架構部分の 下梁を反力床と固定した。実験は、鉛直力を一定載荷の 下、正負繰返し水平力を与えた。一定鉛直力は、載荷前 に実施したコンクリートの圧縮強度試験結果を使用し、 長期軸力相当(0.2・b・D・σ_B)を RC 柱上部に載荷した。 正負繰返し水平力は、RC 上梁に設置したアンボンド PC 鋼棒を水平ジャッキと接続し、正負載荷とも RC 梁に圧 縮力として与えるようにしている。本実験では、アルミ ブレースによる補強部分が RC 架構の面外に設置される。 ブレース架構と RC 架構の偏心による面外変形を拘束す るため、RC 柱上部にパンタグラフを設置した。

変位は、RC 上下梁間の相対変位、RC 柱の軸変位、ア ルミブレースの軸変位、アルミ枠及びアルミ耐圧板と RC 架構の相対変位を変位計で測定した。荷重はロード セルにより検出した。RC 架構の鉄筋、アルミブレース、 アルミ枠、アルミガセットプレートのひずみは、ひずみ ゲージにより測定した。実験中は、コンクリートのひび 割れを目視により観察した。

図 4 に載荷プログラムを示す。水平力の載荷に用いた 層間変形角 R は、RC 上下梁間の相対変位をブレース架 構の階高 H(H=1750mm)で除した値である。

4. まとめ

アルミブレースを RC 架構に外付けした補強構面の正 負繰返し載荷実験を実施した。その1 では、実験概要に ついて報告した。その2で、実験結果を報告する。 【参考文献】

- 大久保昌治、檜山裕二郎、石川浩一郎:アルミ合金製ブレース 1) の耐荷力及び接合方法に関する実験的研究、構造工学論文集、 Vol.57B, pp.475-482, 2011.3
- 2) 竹内徹, 堀内健太郎, 松井良太, 渡辺和志: 繰返し荷重を受ける アルミブレースの座屈性状,日本建築学会構造系論文集, Vol.77 No.682, pp.1969-1976, 2012.12

- *1 (株)住軽日軽エンジニアリング (㈱住軽日軽エンジニアリング 博士(工学) *2
- *3 東急建設(株)
- *4 ㈱建研
- *5
- 千葉工業大学 工学部 建築都市環境学科 教授 博士(工学) *6 一般財団法人ベターリビング 博士(工学)
- 150, 300 300_150 (株試体S-N 供試体B-N C1-A С1-В 500 00 300 10 10 300 t 4.RN 【柱リスト】 【梁リスト】
 C1-A
 C1-B

 主師:
 8-D19 (SD345)
 主師:
 8-D13 (SD345)

 HOOP:
 D6@200 (SD295)
 HOOP:
 D6@75 (SD295)
 8-D19 (SD345) D6@100(SD295) G1-B 8-D19 (SD345) D6@100(SD295) 主筋: STP: 主筋: STP: 400 220 525 400 : 3000 スパン:2350 PC調維 4— ø23 (B種) _7,₩\$,ス99K 2-\$16(6061-T6) ۲ 中間 * 引張負担アン アルミブルース ¢100×6.0t アルミ枠材 H-200×10 アルミブレース ø100×6.0t 7003-15 供試体 供試体S一P 供試体日 to **** _あと施工アンカー 2ーD16(SD295) PC編維 4-ø23(B種) 2-ø16(6061-T6) スパン:3000 7/12 - 2350 【ブレースの材質】 アルミフォークエント 供試体 ブレース S-F 7003-T 7003-T5 B-F 5083-0 無収縮モルタル・スパイラ あと第丁アンカー アルミ枠材 H-200×100(7003-T5 2-D16接着系 @150 (SD295) ·ワッシャー (SS400) アルミ耐用 t 25 (5083-H) 副制設庁板(SS400) - PC調整: 623 (B種) 【枠付きタイプ】 【圧着タイプ】 図2 各供試体の概要図 1.2 2.4 2 0.8 1.6 0.6 1.2 層間変形角R(x 10⁻²rad) 層間変形角K×10⁻²rad 0.8 0.4 0.2 0.4 0 0 -0.2 -0.4 -0.4 -0.8 -0.6 -1.2 -0.8 -1.6 -2 -2.4 -1.2供試体「S-F」「S-P」 載荷プログラム 供試体「B-F」 載荷プログラム 図4 載荷プログラム
- Sumikei-Nikkei Engineering Co. Ltd
- *2 Sumikei-Nikkei Engineering Co. Ltd, Dr.Eng.
- *3 Tokyu Construction Co. Ltd

 - KEN KEN Co. Ltd
 - Prof., Dept. of Architecture and Civil Eng., Chiba Institute of Technology, Dr. Eng.
 - Center for Better Living, Dr.Eng.

*1

*4

*5