アルミブレースを用いた RC 架構補強構面の正負繰返し載荷実験 (その1 実験概要)

アルミブレース 耐震補強 外付け工法 枠付き補強 圧着補強

1. はじめに

現在、既存鉄筋コンクリート造建物(以下、既存 RC 架構)の耐震補強が、公共建築物を中心に進められている。本実験で対象としたアルミニウム合金製ブレース(以下、アルミブレース)は、既存 RC 架構の外側に直付けする耐震補強部材である。これまで、アルミブレース単材の力学特性に関する研究 1)2)は行われてきたものの、アルミブレースを用いて補強された RC 架構の補強効果は確認されていない。

本研究では、アルミブレースを RC 架構に外付けした場合の補強効果を明らかにすることを目的とし、RC 架構補強構面の面内せん断実験を行った。

2. 供試体の概要

表1にRC架構部分の供試体概要を、表2にRC架構部分に使用した材料の機械的性質を示す。実験に用いたRC架構は、中低層RC架構を想定した1/2モデルの1層1スパンフレームである。RC架構は、スパンL×階高Hが3000mm×1750mmで、柱幅b×柱せいDが400mm×300mmである。RC架構の破壊形式は、柱の主筋量及び帯筋量を変化させ、せん断破壊先行型と曲げ破壊先行型の2種類とした。RC架構の柱及び梁に打設したコンクリートは、圧縮強度が14.7N/mm²~15.8N/mm²で、実験の載荷日に測定した数値である。

表 3 に補強部分の供試体概要を、表 4 に補強部分に使 用した材料の機械的性質を示す。図 1 にアルミ合金の応 カーひずみ関係を、図 2 に各供試体の概要図を示す。せ ん断破壊先行型の RC 架構は、ブレースの材質に降伏比が 高い A7003-T5 を使用し、強度型の補強とした。曲げ破壊 先行型の RC 架構には、ブレースの材質に降伏比が低い A5083-O を使用し、靭性型の補強とした。アルミブレー スの管径と肉厚は ϕ 100×6.0t、フォークエンドの材質は A7003-T5 で、各供試体で変わらない。補強形式は、枠付 きタイプと圧着タイプの 2 種類である。枠付きタイプは、 あと施工アンカーとアルミスタッドで構成される間接接 合部を介し、ブレース架構を RC 架構の面外に接合した。 間接接合部には、無収縮モルタルを充填した。圧着タイ プは、アルミ耐圧板を PC 鋼棒で RC 架構に圧着接合した。 供試体は合計 5 体で、このうちブレースに A7003-T5 を用 いた供試体が 2 体、ブレースに A5083-O を用いた供試体 が1体である。

 正会員
 ○
 古川 宏典*1
 同
 南 伊三男*4

 同
 大久保 昌治*2
 同
 中野 克彦*5

 同
 小澤 潤治*3
 同
 藤本 効*6

 同
 渡邉 高朗*3

表1RC 架構部分の供試体概要

21 311113 H1330 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
/1L = -b /-L	スパンL 階高H		T#1#					
供試体 呼 称		幅b	主 筋		帯 筋		破壊 形式	
*T 41	旧同口	せいD	配置	主筋量Pg	配置	带筋量Pw	沙丘	
S-N	L3000	b400	0 010	4.04	D.0.000	0.00	11 / N/r	
S-F	×	×	8-D19	1.91	D6@200	0.08	せん断	
S-P	H1750	D300	(SD345)	[%]	(SD295A)	[%]	先行型	
B-N]		8-D13	0.85	D6@75	0.21	曲げ	
B-F	[mm]	[mm]	(SD345)	[%]	(SD295A)	[%]	先行型	

表2RC架構に使用した材料の機械的性質

供試体	部 位	材質	降伏強度		破断伸び	ヤング率	
呼称			$\sigma_{y}[N/mm^{2}]$	$\sigma_u[N/mm^2]$	ε [%]	E[N/mm ²]	
S-N,F,P	D19	SD345	397.3	592.7	24.0	1.64×10^{-5}	
B-N,F	D13	SD345	387.3	562.0	23.7	1.78×10^{-5}	
全て	D6	SD295A	342.3	535.3	28.0	1.92×10^{-5}	
供試体	種	類	圧縮強度				
S-N			$\sigma_{\rm B}$ = 14.9 N/mm ²				
S-F			$\sigma_{\rm B}$ = 15.8 N/mm ²				
S-P	柱・梁コ	ンクリート	$\sigma_{\rm B}$ = 14.7 N/mm ²				
B-N			$\sigma_{\rm B}$ = 15.2 N/mm ²				
B-F			$\sigma_{\rm B} = 15.3 \; {\rm N/mm}^2$				

表 3 補強部分の供試体概要

20 11103241700 - 1011 11 11012								
供試体	補強	アノ	レミブレー	ス	その他構成部材			
呼 称	形式	サイズ	材 質	細長比	ての心情及部例			
S-N	_	_	_	_	_			
S-F	枠付	φ 100 × 6.0t	A7003 -T5	λ 47.5	フォークエンド(A7003-T5) あと施エアンカー 2-D16@150 アルミスタッド 2-φ16@150 アルミ枠 H-200×100×14/8			
S-P	圧着	[mm]		λ 55.2	フォークエンド(A7003-T5) PC鋼棒 4- φ23(B種) アルミ耐圧板 t25			
B-N	_	_	_	-	_			
B-F	枠付	φ 100 × 6.0t [mm]	A5083 -O	λ 47.5	フォークエンド(A7003-T5) あと施エアンカー 2-D16@150 アルミスタッド 2-φ16@150 アルミ枠 H-200×100×14/8			

表 4 補強部分に使用した材料の機械的性質

供試体	部 位	材質	0.2%耐力	引張強さ	破断伸び	ヤング率	
呼 称	마마	Į Į	$\sigma_y[N/mm^2]$	$\sigma_u[N/mm^2]$	ε [%]	$E[N/mm^2]$	
S-F,P	ブレース	A7003-T5	297.4	342.7	17.8	7.36×10^{-4}	
B-F	ブレース	A5083-O	130.8	310.7	28.2	7.07×10^{-4}	
供試体	種	類	圧縮強度				
S-F	間接	接合部	$\sigma_B = 34.7 \text{ N/mm}^2$				
B-F	無収縮	モルタル	$\sigma_{\rm B}$ = 61.1 N/mm ²				

供試体
名 称 補強形式
S-P N:補強無し
F:枠付き P:圧着
RC架構破壊形式
S:せん断先行 B:曲げ先行

Cyclic Loading Test of Reinforced Concrete Frame FURUKAWA Hironori,OKUBO Shoji,OZAWA Junji,WATANABE Takaaki with Aluminum Brace (Part1.Outline of Tests) MINAMI Isao,NAKANO Katsuhiko,FUJIMOTO Isao

3. 実験方法

図 3 に載荷装置図を示す。供試体は、RC 架構部分の下梁を反力床と固定した。実験は、鉛直力を一定載荷の下、正負繰返し水平力を与えた。一定鉛直力は、載荷前に実施したコンクリートの圧縮強度試験結果を使用し、長期軸力相当 $(0.2 \cdot b \cdot D \cdot \sigma_B)$ を RC 柱上部に載荷した。正負繰返し水平力は、RC 上梁に設置したアンボンド PC 鋼棒を水平ジャッキと接続し、正負載荷とも RC 梁に圧縮力として与えるようにしている。本実験では、アルミブレースによる補強部分が RC 架構の面外に設置される。ブレース架構と RC 架構の偏心による面外変形を拘束するため、RC 柱上部にパンタグラフを設置した。

変位は、RC 上下梁間の相対変位、RC 柱の軸変位、アルミブレースの軸変位、アルミ枠及びアルミ耐圧板とRC 架構の相対変位を変位計で測定した。荷重はロードセルにより検出した。RC 架構の鉄筋、アルミブレース、アルミ枠、アルミガセットプレートのひずみは、ひずみゲージにより測定した。実験中は、コンクリートのひび割れを目視により観察した。

図 4 に載荷プログラムを示す。水平力の載荷に用いた 層間変形角 R は、RC 上下梁間の相対変位をブレース架 構の階高 H(H=1750mm)で除した値である。

4. まとめ

アルミブレースを RC 架構に外付けした補強構面の正 負繰返し載荷実験を実施した。その 1 では、実験概要に ついて報告した。その 2 で、実験結果を報告する。

【参考文献】

- 大久保昌治, 檜山裕二郎, 石川浩一郎:アルミ合金製ブレース の耐荷力及び接合方法に関する実験的研究, 構造工学論文集, Vol.57B, pp.475-482, 2011.3
- 2) 竹内徹, 堀内健太郎, 松井良太, 渡辺和志: 繰返し荷重を受ける アルミブレースの座屈性状, 日本建築学会構造系論文集, Vol.77 No.682, pp.1969-1976, 2012.12

- *2 ㈱住軽日軽エンジニアリング 博士(工学)
- *3 東急建設㈱
- *4 (株)建研
- *5 千葉工業大学 工学部 建築都市環境学科 教授 博士(工学)
- *6 一般財団法人ベターリビング 博士(工学)

図4 載荷プログラム

- Sumikei-Nikkei Engineering Co. Ltd
- *2 Sumikei-Nikkei Engineering Co. Ltd, Dr.Eng.
- *3 Tokyu Construction Co. Ltd
- *4 KEN KEN Co. Ltd
 - 5 Prof., Dept. of Architecture and Civil Eng., Chiba Institute of Technology, Dr. Eng.
- *6 Center for Better Living, Dr.Eng.