電炉鋼材を用いた冷間ロール成形角形鋼管の構造性能 その1 材料特性

正会員 板

電炉鋼材	冷間ロール成形角形鋼管	材料特性
引張特性	衝擊特性	溶接部

1. はじめに

電炉材は主原料が鉄スクラップであり、製鋼時の 消費エネルギーやC0₂排出量が少ない鋼材である。これまで電炉平幅平鋼^(例えば1)や圧延H 形鋼^(例えば2)についての研究がなされてきているが、冷間ロール成形 角形鋼管についての研究はなされていない。そこで 本研究では、電炉鋼材を用いた冷間ロール成形角形 鋼管の構造性能について検討した。その1では、材 料特性について報告する。

2. 母材性能試験

表1 に試験片一覧を示す。試験は化学成分分析、引
張試験およびシャルピー衝撃試験を実施した。試験片
採取位置は、平板部および角部とした。引張試験片は
平板部、角部とも全厚の試験片とし、試験片形状は表
1 に示す通り、JIS Z 2241:2011(金属材料引張試験方法)に示される形状とした。衝撃試験片は、JIS Z2242:
2005(金属材料のシャルピー衝撃試験方法)に示される
V ノッチ試験片とした。ノッチ位置は表面ノッチとした。
図1 にシャルピー試験片採取位置を示す。

2.1 母材性能試験結果

表2 に化学成分分析結果を示す。フリー窒素は 30ppm以下であった。これはTi添加と脱ガス処理によ るものだと考えられる。

表3 に引張試験結果一覧(母材)を示す。図2 に応 カーひずみ関係を示す。、既往の研究結果と同様、角部 は平板部に比べて、0.2%オフセット耐力および引張 強さ共に上昇している事を確認した。また、一様伸び は低下している。

表4 に衝撃試験結果一覧(母材)を示す。図3 に遷 移カーブを示す。角部と平板部の0 ℃シャルピー吸収 エネルギーを比較すると、角部の方が若干小さい値を 示し、図3 より遷移温度も平板部より若干ではあるが 高温側へシフトしているが比較的高い値であった。加 工硬化している角部の吸収エネルギーが比較的高い結 果だったのは、フリー窒素が低減されている為だと考 えられる。

3 . 溶接部性能試験

表5 に試験体一覧を示す。試験体のサイズは、□-400×22とした。溶接試験体は、角形鋼管とダイアフ ラムを溶接した通しダイアフラム試験体と、角形鋼管 を接合した柱一柱試験体を準備した。試験体形状を図 4 に試験片形状および採取位置を図5 に示す。

通しダイアフラム試験体からは継手引張試験体およびDEPO引張試験片を採取し、柱一柱試験体からは、 シャルピー衝撃試験片を採取した。試験体一覧(溶接部)を表6 に示す。

溶接は、開先角度35度、ルート間隔7mm、裏当て 金付きとし、溶接ロボット(下向き)を用いて施工を実

Structural Performance of Cold Roll-Formed Reactangular Column Part.1 Material Propety

板谷 俊臣*1 服部 和徳*2 見波 進*3中込 忠男*4

試験片· -覧(母材性能試験) 表 1 サイ 化学成分分析 衝撃試驗 平板部 平板部 角部 □-150×6 角部 5号 14B号 平板音 平板部 角剖 □-250×12 平板部 备部 角部 1A号 14B号 平板音 平板部 角音 -400×22 平板部 角部 角音 14B号 1A号 5_5 M 表面 裏面 表面 裏面 角部 平板部 角部 平板部 □-250 × 12 □-400 × 22 図 1

		义	1	シ	ヤノ	νĿ		討	験	片扨	取	立置			
採取位置	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	Ti	N	Free N	Ceq JIS	Pcm	f HAZ
平板部	0.16	0.02	0.40	0.015	0.001	0.34	0.18	0.13	0.02	0.005	0.0043	0.0027	0.26	0.21	0.34
角部	0.16	0.02	0.40	0.014	0.001	0.34	0.18	0.13	0.02	0.005	0.0048	0.0027	0.26	0.21	0.34
対抗学	0.16	0.00	0.40	0.014	0.001	0.24	0.10	0.12	0.00	0.005	0.0042	0.0007	0.00	0.01	0.22

□ 150	平板部	0.16	0.02	0.40	0.015	0.001	0.34	0.18	0.13	0.02	0.005	0.0043	0.0027	0.26	0.21	0.34
□-130	角部	0.16	0.02	0.40	0.014	0.001	0.34	0.18	0.13	0.02	0.005	0.0048	0.0027	0.26	0.21	0.34
D 250	平板部	0.16	0.02	0.40	0.014	0.001	0.34	0.18	0.13	0.02	0.005	0.0043	0.0027	0.26	0.21	0.33
□-250	角部	0.16	0.02	0.40	0.014	0.001	0.34	0.18	0.13	0.02	0.005	0.0044	0.0021	0.26	0.21	0.33
□ 400	平板部	0.16	0.02	0.52	0.018	0.003	0.28	0.16	0.17	0.02	0.014	0.0044	0.0008	0.29	0.21	0.35
□-400	角部	0.16	0.02	0.52	0.017	0.003	0.28	0.16	0.17	0.02	0.014	0.0045	0.001	0.29	0.21	0.34
Cen IIS=C-	Si/24+Mn/6+	Ni/40	+Cr/5-	-Mo/4+	V/14											

Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B

サイズ

FIAZ=C+Mn/8+6(P+S)+12N-4Ti (Nはトータル窒素を表し、Ti≤0 005%の時は、Ti=0とする。)

AZ=C+Mn/8+6(P+S)+12N-411(Nはトータル窒素を表し、11≦0.005%の時は、1F0とする。) 主 9 717日 社 陸公田 --- 乾(四、廿)

	12 0		IC IC IC IC	帕木	見(母	11] /		
試験体サイブ	授币位墨	σy	角部/平	σu	角部/平	Y.R.	εu	EL.
武映体サイス	1木 4×19.19.19.	N/mm ²	板部(σy)	N/mm ²	板部(σu)	%	%	%
□ 150×6	平板部	反部 401 118 499 1.04	80	14	34			
□-130×0	角部	472	1.10	518	1.04	91	3	17
D 250-12	平板部 402 486 400	83	13	28				
LI-250×12	角部	477	1.19	525	1.08	91	3	18
□-400×22	平板部	395	1.10	480	1.02	82	14	28
	角部	433	1.10	489	1.02	89	5	26
*ov: 0.2%オフ	セット耐力	、σu:引	張強さ、	Y.R.:降	伏比、εu:	一様伸て	^K 、EL.:	破断伸ひ

32 応力―ひりの実际

ITATANI Toshiomi, HATTORI Kazunori, MINAMI Susumu, NAKAGOMI Tadao

施した。使用溶接ワイヤはJIS Z 3312:YGW18 を使用し た。溶接条件は、入熱40kJ/cm以下、パス間温度350℃以 下を目標値とし、6 層7 パスとした。溶接施工条件結果一 覧を表6 に示す。2 パス目、3 パス目で目標入熱量40kJ/ cm を若干超えている。

3.2 溶接部性能試験結果

表6 に引張試験結果一覧を示す。図6 に応力一ひずみ 関係を示す。十字継手引張試験の破壊性状を**写真1** に示 す。十字継手試験について伸びの計測は歪みゲージを用 いて、DEPO 引張試験は伸び計を用いて実施した。十字継 手引張試験において、破壊は全て母材での破断であった。 また、角部と平板部を比較すると、降伏応力ならびに最 大応力は角部の方が高い値となった。

表8 にシャルピー試験結果一覧を示す。図7 に遷移 カーブを示す。溶着金属の0℃シャルピー吸収エネルギー は、83J であり母材およびHAZ に比べ低い値である。HAZ の0℃シャルピー吸収エネルギーは222Jであり高い値で あった。これはTi 添加効果によるものだと考えられる。

4. まとめ

電炉鋼材を用いた引張試験および衝撃試験を実施した 結果以下の知見が得られた。

1)冷間加工の影響により、平板部に比べ角部の0.2%オ フセット耐力は、1.10~1.19倍に、引張強さは1.02倍 ~1.08 倍に上昇した。

2) 角部の0℃シャルピー吸収エネルギーは、平板部に比 べ若干低下し、遷移温度は高温側へシフトするが、□-250 試験体でvEo=190J、□-400 試験体でvEo=216J、□-400 試験体(HAZ部)で222Jであり、比較的高い値であっ た。これは、T i 添加と脱ガス処理によるものだと考えら れる。

3) 溶接部十字継手引張を実施した結果、溶接部からの破 断はなく、母材破断であった。 【参考文献】

1) 藤本盛久、青木博文、中込忠男、寺田真一、脇山広三:電炉広幅平鋼(SM50A) の素材および溶接部の力学的性質、日本建築学会構造系論文報告集、1990年9月 pp. 89-103 2)嶋徹、中込忠男: 圧延H 形鋼の溶接性を含む機械的性質-電炉材と高炉材の性能 -、溶接学会論文集 第23 巻 第3 号 比較

*1 東京製鐵(株)・博士(工学) *2 一般財団法人ベターリビングつくば建築試験 *3 東京電機大学理工学部 准教授・博士(工学) *4 信州大学工学部 教授・工博 ングつくば建築試験究センター・博士(工学)

表5 試験体一覧(溶接部)

	14€	あ 舌 ロ	-400*22			
	EP.	恢 頃 日	平板部	角部		
	通しダイア試験		十字継手	3	3	
		5	DEPO	2		
	计计学学工业的	(北南)(1)1111	WM		6	
	11-11-11-11-11-11-11-11-11-11-11-11-11-	倒掌託駛	1147		(

韦6 波接冬姓— 暫

			2 12 11	36	
部位	電流 (A)	電圧 (V)	入熱 (kJ/cm)	パス間温度 (℃)	積層図
平板部	$277 \sim 350$	$29 \sim 37$	18 ~ 41	$14 \sim 322$	6 4 3
角部	263 ~ 311	$28 \sim 35$	$19~\sim~42$	$14~\sim~297$	

表7(a)引張試驗結果一覧(十字継手)

試験体サイズ	採取位置	$\sigma_{max}(N/mm^2)$	破断位置							
		496	母材(角形鋼管)							
	平板部	495	母材(角形鋼管)							
□ 400~22		497	母材(角形鋼管)							
-400~22		557	母材(角形鋼管)							
	角部	553	母材(角形鋼管)							
		572	母材(角形鋼管)							
*omay · 最大広	Kermox · 是士広力									

表7(b)引張試験結果一覧(DEP0)

DEPO

十字引張試験 図6応カーひずみ関係

写真1 破壊性状(十字引張試験)

表8 シャルピー衝撃試験結果(溶接部)

試験体サイズ	採取位置	vE0 (J)	_v B ₀ (%)	vTe (°C)	vTs (°C)			
□ 400×22	WM(角部)	83	82	0	19			
□-400×22	HAZ(角部)	222	0	-48	-40			
vEa:0℃吸収エネルギー、vBo: 脆性破面率、vTE: エネルギー遷移温度、vTs: 破面遷移温度								

^{*1} Tokyo Steel Co.,Ltd, Dr.Eng.

^{*2} Tsukuba Building Test Laboratory of Center for Better Living, Dr.Eng. *3 Associate Prof., School of Science and Eng., Tokyo Denki Univ., Dr.Eng. *4 Prof., Faculty of Eng., Shinshu Univ., Dr.Eng.