地盤液状化時の許容応力度計算方法に関する提案 その2計算例

液状化	許容応力度計算	戸建住宅
液状化対策工法		

はじめに

その1 では、地盤液状化時の地盤の許容応力度計算方 法の概要および検討条件について示した。その2 では、 検討条件に基づいた具体的な計算例を示す。

計算方法

地盤液状化時の許容応力度計算は、以下に示す方法で 実施した。

(1) 過剰間隙水圧比の算定

過剰間隙水圧比の算定は、FL 法および数値解析を用い て算定した。地盤液状化時の許容応力度計算には、2 つの 方法で求められた各深度の過剰間隙水圧比のうち大きい 方の値を採用することとした。

(a)FL 法による算定

最初に、建築基礎構造設計指針¹⁾(以下、基礎指針)に 示されている FL 法により FL 値を求めた。密度増大工 法による液状化対策効果については、地盤のN値の増加、 有効応力の増加による液状化強度の増加などを考慮した 上で、FL 値を算定した。過剰間隙水圧比は、前述の FL 値から基礎指針に示される式(1)により求めた。

$$r_u = FL^7 \tag{1}$$

ここで、 $r_{_{\!\!H}}$ は過剰間隙水圧比、FLは FL 法により求められた FL 値である。

(b)数値解析による過剰間隙水圧比の算定

動的な有効応力解析を用いて、各層における過剰間隙 水圧比を求めた。

解析手法

数値解析には、有効応力解析プログラムコード LIQCA²⁾を用いた。LIQCA は、Biot の二相混合体理論に 基づいた土-水連成の動的な支配方程式に、非線形移動 硬化則に基づく構成式を組込んだものである。支配方程 式は、固相の変位と間隙水圧を変数とする *u-p* 形式に基 づいている。空間の離散化には、有限要素法(FEM)と有 限差分法(FDM)を用いて、時間の離散化には Newmark β 法を用いている。

解析条件

図1に、数値解析に使用した有限要素メッシュを示す。 節点数、要素数はそれぞれ1073、1104である。変位境

Proposition about allowable unit stress method during ground liquefaction part2 Results of calculation

正会員	○余川 弘至*	同	二木	幹夫*
司	佐久間 博文**	同	菅谷	憲一*
同	久世 直哉***			

界条件は、解析メッシュの底面を粘性境界(弾性基盤)と し、側面の節点は周期境界とした。水理境界条件として、 地下水面を排水境界とした。数値解析に用いた地盤の入 カパラメータは、浦安市の各地区で実施された地盤調査 結果に基づいて要素シミュレーションにより決定した。 密度増大工法による液状化対策効果については、既往の 研究成果³⁾を参考にして決定した。一例として Fs 層の 要素シミュレーション結果を図2に示す。

図1 有限要素メッシュ 図2要素シミュレーション結果 (c)検討ケースおよび結果

無対策および密度増大工法による液状化対策を実施し たケースについて検討をした。密度増大工法については、 対策仕様の異なる2種類を検討した。表1に検討ケース 一覧を、図3に対策時のイメージ図を示す。図4には、 FL 値および数値解析によって得られた過剰間隙水圧比 の深度分布を示す。

表1 検討ケース一覧

CASE名	対策の有無	改良径	改良深さ	改良 ピッチ	改良体の 配置	改良率	改良 範囲
CASE0	無	-	-	-	-	-	-
CASE1	有	700mm	GL5.0m まで	2.3m	正方形配置	6.6%	敷地内全面
CASE2	有	700mm	GL8.0m まで	2.3m	正方形配置	6.6%	敷地内全面

(2) 液状化の影響を考慮した地盤の単位体積重量('n)

基礎荷重面下にある液状化の影響を考慮した地盤の単 位体積重量は、山口⁴⁾の平均単位体積重量の近似方法を参 考にし、さらに(1)で求めた過剰間隙水圧比、地盤の液状 化により発生する沈下量に応じて上昇する地下水位によ

YOKAWA Hiroshi, FUTAKI Mikio, SAKUMA Hirofumi, SUGAYA Kenichi, KUZE Naoya って生じる過剰間隙水圧⁵⁾および液状化層からの透水圧に よる過剰間隙水圧から求められる過剰間隙水圧比⁵⁾を考慮 して求めた。

(a)CASE1(GL.-5mまで)(b)CASE2(GL.-8mまで)図3 対策工法のイメージ図

(a) FL 値(b)数値図 4 過剰間隙水圧比の深度分布

地盤の許容応力度の計算結果

これまで示した方法により地盤の許容応力度を算定した。表2および表3にその結果を示す。これらの表より、 局所せん断破壊、パンチング破壊それぞれの算定方法で、 地盤の許容応力度を算定した結果、CASE0、CASE1、 CASE2の順にその値が大きくなった。CASE2では、密度 増大工法を実施した層より下部(As2層GL.-10m~GL.-12m)に液状化層(図4(a)参照)がある場合にも、許容応力度 を満足するという結果が得られた。

まとめ

検討モデルを対象に、その1 で提案した地盤の許容応 力度計算方法により、液状化時および液状化対策実施後 における地盤の許容応力度を算定した。検討の結果、局 所せん断破壊、パンチング破壊のいずれの算定方法を用 いた場合でも、地盤の締固め深度が深いケースほど、地 盤の許容応力度が大きくなることを確認した。

今後、実被害例等に対して、本手法を用いた検証を行 い、課題の抽出や提案式の見直しおよび修正等を検討す る予定である。

謝辞 これらの検討は、浦安市の「市街地液状化対策実現可能性検 討調査」の一環として実施したものである。記して謝意を示す。

参考文献 1)日本建築学会:建築基礎構造設計指針,2008. 2) Oka,F., Yashima,A., Shibata,T., Kato,M., and Uzuoka,R.: FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model, Applied Scientific Research, 52, 209-245, 1994. 3) 安田進:液状化の調査から 対策工まで.1988. 4)山口柏樹:土質力学(全改訂),技報堂出版, 1969. 5)一般財団法人ベターリビング:平成 24 年度市街地液状化対策実現 可能性検討調査報告書, 2012.

検討 ケース	基礎基礎		基礎建物	長期	基礎原	基礎底面の		地盤の単位体積重量				支持力係数		許容		
	ЦШ.	幅 長さ 身	重重	按地庄	形状体毅		液状化層	非液状化層	基礎下	基礎上					心力度	判定(>w _L)
	В	L	W	wL	α	β	γ ₁ 'liq	γ ₁ '	γ1	γ ₂	ϕ	Nc	Νγ	Nq	qa	
	m	m	kN	kN/m ²	-	•	kN/m ³	kN/m ³	kN/m ³	kN/m ³	٥	-	-	-	kN/m ²	
CASE0	8.5	11.2	801.5	10	1.2	0.3	0	11.2	2.5	17.7	21	15.8	3.4	7.1	17.1	ОК
CASE1	8.5	11.2	801.5	10	1.2	0.3	0	6.86	3.9	17.7	21	15.8	3.4	7.1	21.2	ОК
CASE2	8.5	11.2	801.5	10	1.2	0.3	0	6.09	4.2	17.7	21	15.8	3.4	7.1	22.0	ОК

表2 地盤の許容応力度計算結果(局所せん断破壊)

基礎 検討 ケース	基礎 基礎	基礎	建物	長期 接地圧	地盤の単位体積重量	土質定数	静止 土压 係数	パンチング 破壊面上の 摩擦抵抗		判定 (>W)
	唱	5 兵	里重		非液状化層					
-	В	L	W	wL	γ1'	ϕ	K_0	R _f	Ra	
	m	m	kN	kN/m ²	kN/m ³	0		kN	kN	
CASE0	8.5	11.2	801.5	10	11.2	21	1.75	524.1	349.4	NG
CASE1	8.5	11.2	801.5	10	6.86	21	0.75	927.0	618.0	NG
CASE2	8.5	11.2	801.5	10	6.09	21	0.75	1275.2	850.2	ОК

表3 地盤の許容応力度計算結果(パンチング破壊)

* ベターリビングつくば建築試験研究センター,博士(工) **ベターリビングつくば建築試験研究センター,博士(農) ***ベターリビングつくば建築試験研究センター,修士(工) * Tsukuba Building Research and Testing Laboratory, Center for Better Living, Dr. Eng.
**Tsukuba Building Research and Testing Laboratory, Center for Better Living, Dr. Agr.
*** Tsukuba Building Research and Testing Laboratory, Center for Better Living, M. Eng