基礎及び敷地に関する基準の整備における技術的検討 (その2) 杭の長期水平抵抗力特性に関する検討

正会員 正会員 正会員	○久世 末政 #上	直哉* ¹ 直晃* ² 波彦* ³	正会員 正会員 正会員	塚田 中山 一木	義明* ⁴ 雄貴* ⁵ 幹夫* ¹
正会員	井上	波彦*'	正会員	二木	幹夫*'

杭 水平抵抗力特性 クリープ

1. はじめに

擁壁の基礎に杭を利用することにより、擁壁およびそ の周囲に建つ住宅の沈下・傾斜を抑制する効果が既往の 文献¹⁾により報告されている。しかし、常時土圧を受け る場合における杭の水平抵抗力特性に関する知見が少な く、課題となっている。そこで、本報では、荷重保持に 伴う水平変位の増加割合及びクリープ破壊発生時の水平 抵抗力特性を把握するため、杭の長期水平載荷試験を実 施した結果について示す。

2. 試験条件

水平載荷試験に使用した試験体は、直径 165.2mm、厚さ 7.1mm、材質 STK490 の鋼管杭とし、プレボーリング工法 によって施工した。また、試験場所は、茨城県稲敷郡美 浦村(以下、現場①)および茨城県つくば市立原(以下、現 場②)の2現場とした。現場①は沖積粘性土を、現場②は 洪積粘性土を主体とした地盤である。これらの現場おけ る柱状図及び試験体位置を図1、2に示す。

3. 試験方法および結果

(1)試験方法

a) 載荷装置

載荷装置図を図3に示す。長期間に渡って安定した水 平力を作用させるため、ワイヤを介しておもりの重量を 水平力として杭に与える機構とした。

b)載荷荷重

載荷荷重一覧を表1に示す。

表1 載荷荷重一覧

試験現場	載荷荷重		条件	
	4.5	kN	予備	
	107	kN	地盤の長期許容変位(y=15mm)	
1	18.7		極限水平抵抗(Qu)の1/3	
	34.0	kN	杭体の長期許容曲げモーメント(Mal)	
	56.1	kN	極限水平抵抗(Qu)の3/3	
	5.0	kN	予備	
	13.8	kN	極限水平抵抗(Qu)の1/3	
2	24.0	kN	地盤の長期許容変位(y=15mm)	
	33.8	kN	杭体の長期許容曲げモーメント(Mal)	
	41.4	kN	極限水平抵抗(Qu)の3/3	

c) 測定項目

測定項目は、載荷荷重、試験体の変位・ひずみ、温度 とした。載荷荷重は、試験体とワイヤの間に設置したロ ードセルにより測定した。また、高感度変位計を鉛直及 び水平2方向、ひずみゲージを試験体深度方向に7箇所、 熱電対を地表面及び試験体深度方向に 4 箇所、設置した。

Maintenance of Technical Standard about Building Site, Soil and Foundation (Part 2 : Study on a Long Term Lateral Loading Behaviour of a Steel Pipe Pile)

現場②における柱状図及び試験体位置図

図3 載荷装置(断面図)

KUZE Naoya, SUEMASA Naoaki, INOUE Namihiko, TSUKADA Yoshiaki, NAKAYAMA Yuuki, andFUTAKI Mikio (2)試験結果

a)荷重保持による水平変位の増加について

水平荷重(H)と水平変位(y)の関係を図 4 に、水平変位 の増分(Δy)と保持時間(Δt)の関係を図 5 に、変位速度 (y/t) と保持時間(Δt)の関係を図 6 にそれぞれ示す。

荷重保持により、水平変位量が増加しており、その増加割合は、概ね荷重の大きさに比例していることが確認された。また、既往の文献²⁾において変位の収束と見なすことができるとされている保持時間4,320分(3日間) 到達時における水平方向地盤反力係数(kh)は、荷重保持直後に比べて、53~86%程度に低下した(図7参照)。なお、現場①・荷重34.0kN時においては、変位が急増しており、クリープ破壊が生じた可能性があるため、これについては、次項で考察を示し、ここでは、この条件以外の結果について述べている。

図7 保持時間(Δt)-kh低下割合関係図

*1 ベターリビングつくば建築試験研究センター

- *2 東京都市大学
- *3 国土交通省 国土技術政策総合研究所
- *4 旭化成建材
- *5 東京ソイルリサーチ

b) クリープ破壊について

現場①・荷重 34.0kN 時において、変位の急増が確認さ れた。この場合における結果の詳細を図 8(a)に、既往の 文献²⁾において、孔内水平載荷試験でクリープ破壊が確 認された場合の結果を図 8(b)にそれぞれ示す。

図 8 $y/t-\Delta t$ 関係図

変位が急増し始めた付近(図 5 参照)において、変位速 度の上昇が図 8(a)に示すとおり確認され、クリープ破壊 の兆しであると考えられたが、その後、変位速度は再び 減少し、変位の増加も緩やかとなり、結果として、クリ ープ破壊は、確認されなかった。ここで、杭体の曲げひ ずみ分布と水平方向地盤反力(p)分布を図9に示す。

図9曲げひずみ分布及びp分布

図 9 から、荷重保持時間の増加に伴い、杭体の曲げひ ずみは増加し、p の分布は下方に移行し、その最大値は低 下したことが確認できた。よって、地盤の水平力負担範 囲の変化及び地盤への最大圧力の低下等が明らかなクリ ープ破壊が生じなかった要因であると推察される。

4. まとめ

本報では、長期に渡って杭に水平力をさせた場合の水 平変位量の増加割合及びクリープ破壊らしき挙動発生時 における杭の水平抵抗力特性の把握を行った。今後は、 設計時における kh の低減方法や許容変位の設定方法等に ついて調査・検討する必要があると考えられる。

なお、これらの検討は、国土交通省「平成 23 年度 建 築基準整備促進事業」の一環として実施したものである。

参考文献

1)松下ら:基礎及び敷地に関する基準の整備における技術的検討(その 5),日本 建築学会大会学術講演梗概集,pp.405-406,2011

2)中川ら:ボーリング孔内クリープ試験と地盤K値への適用,土と基礎,31-8,p.17-23,1983 年 8 月

- *1 Tsukuba Building Research and Testing Laboratory, Center for Better Living
- *2 Tokyo City University
- *3 National Institute for Land and Infrastructure Management
- *4 ASAHI KASEI Construction Materials Corp
- *5 Tokyo Soil Research Co., Ltd.