基礎及び敷地に関する基準の整備における技術的検討

(その4) 擁壁背後地盤上に建築された住宅の変形解析(解析条件)

正会員	○余川	弘至* ¹	同	若井	明彦* ²
司	井上	波彦* ³	同	二木	幹夫* ⁴
同	久世	直哉* ⁵	同	松下	圭佑*6

		半/./+・たカムビ
毛地擁壁	尸運仕毛	叙10. 解析

1. はじめに

これまでに、地震により被害を受けた擁壁に関する調 査結果¹⁾が多数報告されている。これらの被害調査報告の 中では、擁壁が被害を受けることにより、住宅にも被害 がおよんでいるという報告もある。

現在,建築物が擁壁に近接する場合の評価基準が明確 でなく,擁壁の安定性が損なわれた場合,建築物の安全 上の支障を生ずる恐れがある。

そこで、2次元動的有限要素解析プログラム²⁾を用いた 擁壁-地盤-住宅の一体系解析を種々実施し、地盤と住 宅に対して安全上の配慮が必要な条件の整理,またその 場合の対応方針について検討した。本報では、実施した 解析の条件について示す。

2. 各種のモデル化

(1)住宅のモデル化

解析の対象とした住宅は、(独)住宅金融支援機構の計算 例を参考に、木造 2 階建ての住宅(重い建物・瓦葺・土壁 有・10m×10m 平面、固有周期 T:0.25 秒(T=0.03H))を想定 した。住宅の重量や強度については、「木造住宅の耐震診 断と補強方法」に基づき決定した。解析では、住宅を質 点と構造梁によりモデル化し、すべて線形弾性体とした。 住宅の基礎については、すべて布基礎とした。

(2) 擁壁のモデル化

擁壁は、高さ 2m, 5m および 10m の片持ちばり式の L 型擁壁を想定した。それぞれの擁壁の仕様は、常時にお ける検討と大地震時における検討を行い、転倒・滑動・ 支持力の安全率が現行の基準³⁾を満足するように設定した。

また,擁壁高さ 10m のケースでは,軟弱地盤上に擁壁 を設置することを考慮して,擁壁に杭基礎を用いた場合 についても検討した。杭基礎の仕様は,許容応力度計算 を行い決定した(許容応力)。さらに,擁壁の変形はその背 後地盤上に建つ住宅に影響を与えると考えられるため, 杭頭の変形に制限を設けた場合についても検討した(許容 変位)。ここでは,擁壁下部地盤の強度の違いによりこれ らが考慮されている。擁壁および杭基礎はすべて線形弾 性体とした。擁壁基礎が直接基礎の場合の大地震時の検 討結果を表1に,杭基礎の仕様を表2に示す。

Maintenance of Technical Standard about Building Site, Soil and Foundation (Part 4 : Deformation Analyses of Detached House Built on Retaining Wall Rear Ground(analyses conditions))

表1 大地震時における擁壁の安全率

安定計算の条件			安全率			
擁壁高さ	基礎形式	地盤の許容応力度	転倒	滑動	支持力	
2m	直接	100kPa	2.891	1.068	1.192	
5m	直接	150kPa	3.740	1.150	2.343	
10m	直接	300kPa	7.093	1.643	4.010	

表2 杭基礎の仕様(擁壁高さ10mのケース)

古の設計冬休	地盤の		拉新	材質	鋼管厚	杭本数 (本)	
机の設計来件	許容応力度	応力度 机栓				断面方向	延長方向
許容応力	20kPa 以下	1,000mm	鋼管杭	SS490	12mm	3	5
許容変位	50kPa 以上	1,000mm	鋼管杭	SS490	12mm	3	5

(3)地盤のモデル化

地盤は、UW モデル⁵⁰を用いることで、地盤の非線形特 性を考慮した。パラメトリックスタディを行い地盤強度 の違いによる住宅への影響を把握するためには、地盤強 度の異なるいくつかの地盤を準備する必要がある。ここ では、地盤の許容応力度⁶⁰を地盤強度の指標値とし、地盤 材料をすべて¢材と想定した上で、次式に基づき各種の 解析に入力するパラメータを設定した。

$$qa = \frac{1}{3} (i_c \alpha C N_c + i_{\gamma} \beta \gamma_1 B N_{\gamma} + i_q \gamma_2 D_f N_q)$$
(1)

ただし、上式を用いる場合、基礎荷重面(B)に応じて、 地盤の許容応力度が異なるということになる。構造物の 形状や形式に応じて、強度を変更すると、強度の違いに よる定性的な挙動の変化を確認することが困難となるた め、基礎荷重面(B)は 10(m)とした。地震動の影響を考慮 するため、荷重の鉛直方向に対する傾斜角θに 14 度を与 えた。上記の方法によって求められた解析パラメータを 表3に示す。

表3 解析パラメータ

名称	ヤング率に関わる比例定数	ポアソン比	内部摩擦角	単位体積重量
	E_0 (kPa)	ν	ϕ (deg)	$\gamma (kN/m^3)$
許容応力度 30kPa	16,940	0.35	26.0	18.0
許容応力度 50kPa	23,660	0.35	28.0	18.0
許容応力度 70kPa	32,346	0.35	30.2	18.0
許容応力度 100kPa	40,460	0.3	32.0	18.0
許容応力度 150kPa	50,540	0.3	34.0	18.0
許容応力度 300kPa	70.875	0.3	37.5	18.0

3. 入力地震動

告示 1461 に示される工学基盤面でのスペクトルに乱数 位相を与え,工学基盤面での加速度波形(2E 波)を作成し た。その工学基盤面での加速度波形を入力波形として,

YOKAWA Hiroshi, WAKAI Akihiko, INOUE Namihiko FUTAKI Mikio, KUZE Naoya and MATSUSHITA Keisuke 等価線形解析⁷⁾を行い,FEM でモデル化した基礎地盤下 面に入力する E+F 波を算出した。図1 に、入力地震動の 時刻歴波形を,図2に加速度パワースペクトルを示す。

図2 パワースペクトル

4. 解析メッシュ

図 2 に,解析に用いた解析メッシュの一例を示す。節 点数 4223,要素数 1361 である。基礎地盤底面の節点を水 平・鉛直固定とし,側面の節点は水平方向固定とした。 左右側方の境界条件が対象とする住宅や擁壁へ与える影 響を小さくするために,解析領域は水平方向に 10 倍程度 とった。

図3 解析メッシュの一例

5. 検討ケース

*6 群馬大学工学部

擁壁高さ 2m の場合では,離間距離の異なる 5 ケースを, 擁壁高さ 5m および 10m の場合では,離間距離の異なる 4 ケースについて検討した。また,擁壁高さ 2m および 5m の場合では,擁壁背後地盤と擁壁下部地盤の強度をさま ざまに変化させたケースを実施し,擁壁高さ 10m の場合 では,擁壁を杭基礎により支持した状態についても,擁 壁下部地盤の強度を変化させたケースを実施した。検討 ケースの一覧を表 4 に示す。

表 4	検討ケース一瞥
11 7	(灰町) / 見

擁壁		住宅		擁壁背後地盤	擁壁下部地盤
高さ	基礎形式	離間距離	基礎形式	許容応力度	許容応力度
	直接基礎	0.0m	布基礎	30kPa	
	直接基礎	1.0m			
	直接基礎	1.6m			100kPa
	直接基礎	2.7m			
	直接基礎	5.0m			
2m	直接基礎				100kPa
	直接基礎			30kPa	150kPa
	直接基礎	1.0m	左甘 郡		300kPa
	直接基礎	1.011	11 25 102		100kPa
	直接基礎			70kPa	150kPa
	直接基礎				300kPa
	直接基礎	0.0m 1.0m	士甘体	201-D.	150kPa
	直接基礎				
	直接基礎	5.0m	11 25 102	SUKPa	
	直接基礎	7.8m			
5	直接基礎	1.0m	布基礎	30kPa	150kPa
5111	直接基礎				300kPa
	直接基礎			50kPa	150kPa
	直接基礎				300kPa
	直接基礎			70kPa	150kPa
	直接基礎				300kPa
	直接基礎	0.0m			
10m	直接基礎	1.0m			300kPa
	直接基礎	11.0m		201-0-	JUOKE a
	直接基礎	16.8m	右其碑		
	直接基礎		111 265 102	JUKP'a	300kPa
	杭基礎(許容応力)	0.0			20kPa
	杭基礎(許容変位)	0.011			50kPa
	杭基礎(許容変位)				300kPa

6. まとめ

本報では, 擁壁-地盤-住宅の一体系解析に必要とな る解析の諸条件について示した。次報では, この条件に 基づき実施した解析結果について述べる。

なお,これらの検討は、国土交通省「建築基準整備促 進事業」の一環として実施したものである。 参考文献

- 久世ら(2009): 基礎及び敷地に関する基準の整備における技術的 検討(その 5)宅地擁壁と住宅との離間距離等に関する実態調査,日 本建築学会大会学術講演梗概集, No.20230, pp.459~460.
- A. Wakai et al (1999) : 3-D elasto-plastic finite element analyses of pile foundations subjected to lateral loading, Soils and Foundations, Vol.39, No.1, pp.97-111.
- 3) 宅地防災研究会(2007):宅地防災マニュアルの解説 第二次改訂版.
- 4) 社団法人日本道路協会(2002):道路橋示方書・同解説 I 共通編 IV 下部構造編.
- A. Wakai et al. (2004) : A simple constitutive model for seismic analysis of slopes and its applications, Soils and Foundation, Vol.44, No.4, pp83-97.
- 6) 日本建築学会(2001):建築基礎構造設計指針.
- P. B. Schnabel et al. (1972) : SHAKE A computer program for earthquake response analysis of horizontally layered sites, EERC Report, No. 72-12.

*1ベターリビングつくば建築試験研究センター,博(工)
*2 群馬大学工学部,博(工)
*3 国土交通省 国土技術政策総合研究所
*4 ベターリビングつくば建築試験研究センター,修(工)
*5 ベターリビングつくば建築試験研究センター,工博

- *1 Tsukuba Building Research and Testing Laboratory, Center for Better Living, Dr. Eng.*2 Gunma Univ., Dr. Eng.
- *3 National Institute for Land and Infrastructure Management
- *4 Tsukuba Building Research and Testing Laboratory, Center for Better Living, M. Eng.

*5 Tsukuba Building Research and Testing Laboratory, Center for Better Living, Dr. Eng.*6 Gunma Univ.