現場溶接型柱梁溶接接合の変形能力に関する実験的研究 その2 水平ハンチエ法の変形能力

現場溶接型柱梁溶接接合部 変形能力 孔空きフランジエ法 孔位置 水平ハンチエ法

1. はじめに

現場溶接型接合の変形能力を向上させるための接合 部ディテールが数多く提案されいる^{例えば1~10}。本報で は水平ハンチエ法^{例えば1~4}と、孔空きフランジエ法^{例え} ^{ぱ5~10}の変形能力の違いについて報告する。

2. 実験概要

2.1.試験体形状・実験パラメータ・加力方法

本研究では実大ト型試験体による実験をおこなった。試験体形状はその1と同様である。実験パラメー タを表1に示す。水平ハンチ工法の試験体では2つの ディテールを用いており、それらを図2に示す。また 同材料を用いて、比較試験体として現場溶接型試験体 MGを用意した。部材に関して、現場溶接型MG、水平 ハンチ工法MGH60、MGH83の3体は梁部材に組立H形 鋼BH-600 × 200 × 16 × 25(SM490A)、柱部材に冷間成形 角形鋼管 -400 × 400 × 25(BCP325)、ダイアフラムには PL-450 × 450 × 32(SM490A)を用いて通しダイアフラム 形式とした。上下フランジ共に内開先とし、梁フラン ジとダイアフラムは芯合わせで完全溶け込み溶接とし た。溶接ワイヤはYGW18(1.4)を用い、入熱40kJ/cm、 パス間温度350 で管理した。加力方法及び供資材の 機械的性質はその1と同様である。

水平ハンチ試験体

水平ハンチ工法の補強プレートと梁フランジの溶接 には部分溶込み溶接を使用し補強プレート端部は回し 溶接は施していない。

孔空きフランジエ法試験体

本報では孔空きフランジ工法の試験体は参考データ ¹⁰ を引用する事とした。参考データは(試験体名 MGA340と称す。)孔径32mm、距離aを340mmにした試 験体であり、応力比 は1.07である。

3. 実験結果

実験結果一覧を表2に示す。荷重-変形関係及びス ケルトン曲線を図3に示す。図3中の は破断時を表 す。破壊性状写真を図4に示す。

MG 試験体、MGA340 試験体は梁フランジとスチー ルエンドタブのスリット部を起点に延性亀裂が進展し 脆性破壊に至った。試験体 MGH60、MGH83 はハンチ先 端部を起点に脆性破壊に至った。

Part2 Deformation capacity of beam-to-column joints with horizontal haunch

同	崎 野	艮比	呂 ~2	同	尸咄	一具	^ 4					
同	川端	洋介	* 4	同	神戸	⋾渡	* 5					
同	村山	敬司] * 6									
表1 宝輪パラメータ												
試験体名	梁端ディテール	フランジ幅 (mm)	バンチ長 さ	応力比	$_{c}P_{p}(kN)$	$_{c}\delta_{p}(\text{mm})$	備考					
MG	-	200	-	-								
MGH60	水平ハンチ	300	300	-	513	19.73						
MGH83	水平ハンチ	500	269	-								
MGA340	孔空きフランジ		-	1.07	456	18.19	文献10					
_c P _p :全塑性耐力(計算値) _{c p} :全塑性耐力時の変形量(計算値)												
	45 300 MGH60	60 200 60 320	=		45 [°] 269 M G H 8	83 200 83	366					
図1 水平ハンチ工法ディテール												
梁端部	加力点長。 a=340 孔音 0 0 Beam 0 0 Diaphram	<u>EL(=285</u> ○ ○ Flange 32		<u>梁</u> 端	部Zpf	孔部	ZpH					
$h = \frac{M_{h}}{Z_{ph}}$ $M_{h} = P \times (0$ $= \frac{h}{f} = \frac{1}{2}$	$f = \frac{M}{Z}$ $L-a) \qquad M_{h} = \frac{M}{Z_{pf} \times (L - a)}$ $\boxed{Z_{pf} \times (L - a)}$ $\boxed{\mathbb{Z} 2}$	<u>ℓ_f</u> _{p f} = P×L	z z ٤ ع	[*] _f _p _p _f _f _A Z梁表 3.2 梁 	でであった。 「この」では、 「この」で、 「」の 「」の 「」の 「」の 「」の 「」の 「」の 「」の	欠損を考 5 方 断面係数 欠損を考 数 面 係 数 の 点 ま で い う こ の の の の の の の の の の の の の	<i>慮した</i> , <i>続</i> 復の距離 心					

正会員

服部

和德*3

日

中込

忠男*1

表2 実験結果一覧

試験体名	終局 時期		e^{P_p} (kN)	_e δ _p (mm)	$e^{P_{max}}$ (kN)	$e^{\delta_{max}}$ (mm)	α	η_{s}			
MG	+4	+	548	28.44	681	88.66	1.33	4.4			
		•	-532	-27.15	-657	-69.01	1.28	3.4			
MGH60	+4	+	634	31.28	754	68.26	1.47	3.2			
		-	-597	-27.53	-737	-65.92	1.44	3.2			
MGH83	+4	+	640	29.37	780	84.49	1.52	4.3			
		-	-615	-29.04	-737	-64.44	1.44	3.1			
MGH340	-7	+	426	26.61	603	145.63	1.32	10.6			
		-	-407	-26.05	-605	-136.76	1.33	10.7			
P。:梁の全塑性耐力(Genral Yeild法による)。 。:全塑性耐力時の梁の変形量											
P ⁱⁿ ax:最大荷重:最大変位 :耐力上昇率(=_P _{inax} / _c P _p)											
。:累槓型性変形倍率(=₩。/(。P。×。 。))											

₩ (: スケルトン吸収エネルギー / ` 」 [____]: 破断側

4. 考察

4.1.スケルトン曲線の比較

図5に水平ハンチ試験体、孔空きフランジ工法試験 体、比較試験体のスケルトン曲線を比較して示す。水 平ハンチ試験体は比較試験体と比較して降伏耐力は向 上している事が分かる。孔空きフランジエ法試験体は 降伏耐力が低いことを確認できるが、変形能力は大き く向上している事が分かる。表2に示すように、孔空 きフランジ工法は他より2倍以上の であった。

4.2. 歪性状

水平ハンチエ法が大きな変形能力の上昇が得られな かった要因としてハンチ先端を起点に脆性破壊に至っ ていることから、ハンチ先端に早期破断を起こした原 因があると考えられる。図6に水平ハンチ工法2体の ゲージ貼付位置、図7に試験体 MGH60、MGH83 のハン チ先端部及び梁端部の歪分布を示す。ここでの歪は、 3 。 。時のピーク時の歪とした。水平ハンチエ法では 梁端部に比べ、ハンチ先端部の歪が非常に高い傾向を 示した。

5. まとめ

水平ハンチ試験体は、従来の試験体に比べ梁フラン ジを拡幅している為、耐力の向上が見られたが、変形 能力はそれほど向上しなかった。その理由として、ハ ンチ先端のひずみの集中が考えられる。孔空きフラン ジエ法は従来の試験体に比べ、耐力の低下が見られる が大きな変形能力を示した。なお。この結果は本研究 の範囲であり、設計寸法により変形性能は変動すると 考えられる。

「ラハンコルン」。 【参考文献】 1)坂本真一、中村庄滋、大橋泰裕:鉄骨柱梁接合部における現場溶接接合形 式梁端接合部の構造性能の改善法,鋼構造論文集 第5巻 第20号 pp.113-124 1998年12月 2)田中直樹、澤本牟和、佐伯俊夫、深田良雄:水平八ンチ付はりと角型鋼管 柱接合部の弾塑性挙動,鋼構造論文集第5巻 第20号 pp.101-111 1998 年12月

- 年12月
 3) 杉本浩一、石井匠、鈴木孝彦、森田耕次:角形鋼管柱 水平ハンチ・変断 面梁接合部の破断性状に関する実験的研究、日本建築学会構造系論文集 第552号 pp.141-148 2002年2月
 4)加藤勉:柱¥梁接合部の耐力,変形能力の改善,鋼構造論文集 第5巻 第 17号 pp141-147 1998年3月
 5)李相周、吹田啓一郎、井上一郎:穿孔によるRBS 工法を用いたH形断面 梁の塑性変形能力、鋼構造論文集 第9巻 第36号 pp.47-54 2002年 10
- 12月

- 12月
 6)Yang,T.S.,Egor P.Popov:Experimental and Analytical Studies of Steel Connections and Energy Dissipators,Repot No.UCB/EERC-95/13,University of California Berke-ley,1995.12
 8) 服部和徳,中込忠男,市川祐一:孔空きフランジ方式を用いた現場溶接 型柱梁、溶接接合部の変形能力に関する実験的研究,日本建築学会構造系 論文集 585号 pp.155-161 2004.11
 9) 宮脇正尚、中込忠男、崎野良比呂、服部和徳、戸堀一真:孔空きフラン ジ工法を用いた現場型柱梁溶接接合部の変形能力に関する研究 その2部 材断面の違いが変形能力に与える影響、日本建築学会構造系論文集 640号 2009.6 掲載予定
 10) 高柳翔太、中込忠男、服部和徳、崎野良比呂、戸堀一真、川端洋介、神 戸渡:欠陥を有する現場溶接型柱梁溶接接合部の変形能力に関する実験的 研究 その1、2 日本建築学会大会学術講演梗概集 2009.8

【謝辞】本実験は平成19年度科学研究費補助金 基盤研究(B)「有孔フラン ジエ法を用いた現場型柱梁溶接接合部の変形能力に関する研究」(課題番号 19360248)によるものです。

実験を行なうにあたり(株)角藤には試験体作製に御協力頂きました。ま た、ナカジマ鋼管(株)には鋼材を御提供頂きました。ここに深く謝意を表 します。

- 大阪大学接合科学研究所 助教・博士(工学) * 2
- *3
- *4 信州大学大学院生
- *5 東京理科大学工学部第一部建築学科 助教 博士(工学)
- *6 中部鋼鈑(株) 博士(工学)

MGA340 破壊性状写真

*1 Prof., Dept. of Architecture, Faculty of Engineering, Shinshu Univ., Dr. Eng. *2 Assist.prof., Joining and Welding Research Institute, Osaka Univ., Dr. Eng. (財) ペターリビング つくば建築試験研究センター 博士(工学) *3 Tukuba Building Test Laboratory of Center for Better Living., Dr. Eng.

- *4 Graduate student, Faculty of Engineering, Shinshu Univ.
- *5 Assistant Prof., Dept. of Arch., Faculty, of Eng., Tokyo Univ. of Science, Dr. Eng. *6 Chubu Steel Plate Corporation, Dr. Eng.