スタックラミナパネルを用いた木・鋼ハイブリット耐震壁の実験的研究

ーその3 実大水平加力実験(柱芯間距離による影響)ー

	正会員	○芥川 豪* ¹	正会員	增山 和憲* ²	正会員	笹谷	真诵* ³
	非会員	逸見 康弘*4	正会員	後藤 一真*3	正会員	藤原	圭吾* ³
	非会員	奥村 賢史*4	正会員	立花 正彦*6	正会員	岡田	賢* ²
	正会員	岡部 実* ⁵					
鉄骨造	木造	スタックラミ	、ナパネル				
耐震壁	ハイブリット構	造					

1. はじめに

前報その1、2に引き続き、本報では、スタックラミ ナパネルを用いた木・鋼ハイブリッド耐震壁の柱芯間距 離を変化させた場合の実大水平加力実験を行う。

2. 実験計画および試験体形状・寸法

実験計画は表 1 に示すとおり,実験変数は柱芯間距 離:1500mm (SFW:前報による)および 3600mm (WFW)の 2 水準とし,これに木質パネルの有無による性状の違いを 把握するために,鉄骨フレームのみの試験体 (SF,WF)の 2 水準とする。鋼材の機械的性質を表 2 に示す。また木材 の機械的性質は木材の素材試験結果(図 3)を用いる。

試験体の形状は図1に示すとおり,試験体は実大寸法 とした1層1スパンの架構であり,WFWは同一試験体を各 3体,WF試験体を各1体とした合計4体製作する。ただ し座屈止め材は,WFW試験体は鉄骨柱と梁にそれぞれ2か 所ずつ計8箇所,1-M20の中ボルトにて接合する。

3. 実験方法および測定項目

本実験の加力計画を図 1 に示す。なお実験方法は柱芯 間距離 1500 mmと同様とする。

4. 実験結果および考察

(1)実験経過 代表的な破壊性状を写真1に示す。最終破壊形式は、せん断破壊(TypeA)および接合金物Iの木質パネルへのめり込みが顕著にあらわれたもの(TypeB)の2種類に分類される。

R=1/150 までは SFW 試験体と同様の現象が確認され, R=1/100 以降より,接合金物 I の木質パネルのラミナ直 交面への横圧縮によるめり込みが SFW 試験体よりも顕著 にあらわれ,同時に梁に設置された座屈止め材が回転し, 木材にめり込んでいく現象が確認された。R=1/50 より 加力側上部接合部近辺で,ラミナ材方向のめり込みによ る割裂が発生し,変形が大きくなるにつれて加力側上部 とその対角の脚部接合部付近ではラミナ材方向および直 交方向の割裂が顕著にみられた。終局時は,WFW-1 試験 体は接合部端部のめり込みが著しくなることで荷重が低 下したので実験を終了し,WFW-2 および WRW-3 試験体は 座屈止め材がめり込みその部分から木質パネルにせん断 割裂が入り,終局時は木質パネルのせん断破壊により,

Experimental study of wood and steel hybrid shear wall using Stuck lamina panel

(3) Experimental study of the efficiency for the column-span

表1 実験計画表 表2 鋼

表2 鋼材の機械的性質

写真1 試験体の破壊状況

実験を終了した。

(2) 履歴性状

各柱芯間距離における試験体の履歴曲線を図2に示す。 R=1/200付近より若干逆S字型のループが見られ始め、その後R=1/75より剛性が低下した。R=1/50以降はほぼ荷重の増加はないまま変形が進行し、R=1/20付近で最大耐力 (Qav=632.4kN)に達した。WF試験体は最大耐力時までSF試 験体と同様の性状を示し、R=1/17 に最大耐力(84.6kN)

Akutagawa Tsuyoshi, Masuyama Kazuaki, Sasatani Msamichi Henmi Yasuhiko, Goto Kazuma, Fujiwara Keigo, Tachibana Masahiko, Okada Satoru, Okabe Minoru に達した。また木質パネル挿入した結果,最大耐力が7.5 倍,初期剛性で13倍上昇した。

<耐震壁の辺長比による影響> WFW 試験体の初期剛性 および最大耐力は,SFW試験体に対して1.3倍程度上昇す る結果となった。これは,WF試験体は鉄骨フレームの柱 スパンが大きくなることにより,耐力および剛性がSF試 験体よりも小さくなるが,木質パネルを挿入することに より,WFW試験体の木質パネルのせん力負担割合がSFW試 験体よりも増加することから,ハイブリッド耐震壁全体 としての耐震性能が上がったものと考えられる。

(3) 構造特性係数 (Ds 値)

構造特性係数(Ds 値)は,表 3 に示すとおり,実験より 得られた履歴曲線より枠組壁工法建築物構造計算指針⁴⁾ の評価方法に基づき算出する。なお,SFW-1 は R=1/48 にて柱脚ダイアフラムの溶接部が破断したため,SFW-1 の R=1/50 以降の実験結果は評価対象から除外する。各 試験体の Ds 値の平均値は,SFW 試験体で 0.51,WFW 試 験体は 0.49 となり,両シリーズで大きな差は見られな かったが,短期基準せん断耐力は両シリーズ共に終局時 まで耐力低下を生じることはなく,SFW 試験体は 154.2kN,WFW 試験体は 230.0kN (いずれも平均値)であ り,SFW 試験体に比べてWFW 試験体の方が約 1.5 倍上昇 する結果となった。

(4) 木質パネルと鉄骨フレームのせん断力分担

鉄骨フレーム柱のひずみ測定結果より,鉄骨フレームのせん断力(ΣQs)および木質パネルが負担するせん断力 を算出し、WFW試験体のWF試験体の結果との比較を行い, フレーム全体に作用するせん断力Qと,鉄骨柱より算出し たQsの差分を木質パネルが負担するせん断力Qwを算出し、 得られたQs,Qw及び包絡線を図3にそれぞれ示す。

SFWおよびWFW試験体については,鉄骨フレームに作用す るせん断力とSFおよびWF試験体の荷重変形関係はほぼ同 様の性状を示した。また試験体の弾性域における木質パネ ルの負担せん断力と,鉄骨柱の負担せん断力との負担割合 は8:1であり,WFW試験体については9:1であった。

【参考文献】1) 笹谷、芥川、逸見、奥村、網野、後藤、 藤原、岡部、立花:スタックラミナパネルを用いた木・ 鋼ハイブリッド耐震壁の実験的研究(その1、2)、2014 年日本建築学会大会(近畿)学術講演梗概集 2) 2007年枠組壁工法建築物構造計算指針:日本ツーバイフ オー建築協会 3) 木質構造接合部設計マニュアル:日本建築学会

*¹東京電機大学大学院(現㈱エナ・デザインコンサルタント) *²東京電機大学大学院 *³アラップ *⁴(株) 平成建設 *⁵ベターリビングつくば研究センター 博士 (農学) *⁶東京電機大学 教授 工博

図2 履歴曲線

表3 実験結果及び各特性値

試験体名		降伏耐力 Qy(kN)	降伏変位 るy(mm)	剛性 K(kN/cm)	終局耐力 Qu(kN)	終局変位 るu(mm)	塑性率 µ	Ds值	最大荷重 Qmax(kN)	Q _{1/120} (kN)	短期基準 せん断耐力(kN)
5	ŝF	66.5	68.71	9.68	86.5	127.90	1.43	0.73	89.1	29.99	1
WF		62.7	82.21	7.64	80.9	202.90	1.91	0.60	84.6	24.50	I
SFW	-1	202.5	28.53	71.00	331.4	92.43	1.98	0.58	360.4	213.20	-
	-2	261.3	41.46	63.00	384.4	181.00	2.97	0.45	433.0	199.10	170.9
	-3	274.4	53.38	51.40	390.7	155.91	2.05	0.57	439.0	155.80	137.6
平井	匀值	267.9	47.42	61.80	387.6	168.46	2.51	0.51	436.0	177.45	154.2
標準	偏差	9.3	8.43	9.85	4.5	17.74	0.65	0.08	4.2	30.62	23.5
WFW	-1	285.6	29.86	95.66	532.1	157.90	2.84	0.46	616.7	286.40	230.2
	-2	345.9	40.08	86.31	546.5	138.90	2.19	0.54	621.2	299.70	201.3
	-3	424.0	49.82	85.10	618.3	194.90	2.68	0.48	659.3	297.80	258.2
平井	匀值	351.8	39.92	89.02	565.6	163.90	2.57	0.49	632.4	294.63	230.0
標準	偏差	69.4	9.98	5.78	46.2	28.48	0.34	0.04	23.4	7.19	28.5

*1Graduate School of Tokyo Denki University

*² Graduate School of Tokyo Denki University

*³ARUP

*⁴Heisei Kensetsu Co.,LTD

*⁵Tsukuba Building Research and Testing Laboratory Center for Better Living, Dr.Agr

*⁶Prof., Tokyo Denki University, Dr. Eng