構造用集成材梁部材の火災時耐力

その1 実験概要及び試験体

構造用集成材	梁	火災
炭化速度	温度分布	火災時耐力

1. はじめに

近年、森林資源や林業の健全化、さらには低炭素化に よる環境配慮等の視点から木材についての関心が高まっ ており、2010年に施行された「公共建築物等木材利用促 進法」により、国全体の木造建築に対する普及製作が盛 んに行われてきている。これらの後押しもあり、これま で以上に耐火構造の要件を満たす木構造部材の開発が進 んでおり、ここ数年で都市部においても比較的大規模な 木造耐火建築物が見受けられるようになった。

木構造部材においては、不燃材料による構造とは異な り、盛期火災後の火災減衰期(建物内部にある可燃物の燃 焼後)においても木構造部材の自己燃焼が継続して耐火性 能が失われる恐れがあるため、木構造部材の耐火性能評 価試験では、所定の加熱時間までの性能のみならず、火 災加熱後の燃え止まり性能も要求されている。これより、 耐火木造建築に関する我が国の研究開発では、火災加熱 終了後の燃え止まり性能を持たせるために部材を難燃化 したものが多い。木構造部材の火災時耐力を、その自己 燃焼過程まで把握できれば、難燃化等の工法によらず、 構造用集成材の純粋な木現わしによる耐火木造建築の普 及促進に繋がるのではないかと考える。しかし、木構造 部材の火災加熱終了後の耐力に関するデータは極めて少 ない。

そこで本研究では、構造用集成材の梁部材を対象とし、 火災加熱時および火災加熱終了後(自己燃焼過程)におけ る耐火性能を把握することを目的とし、以下の3項目に ついての検討を行うこととした。

①炭化速度、断面内温度分布について
②火災時及び火災終了後の最大耐力について
③最大耐力時の荷重を与えた場合の耐火時間

2. 実験概要

実験条件を表-1に示す。まずは、No.1において、構造用集成材の常温時における最大耐力を確認する。No.2 及び No.3 は火災加熱時及び火災加熱終了後の炭化速度及 び断面内部の温度分布を確認する。なお、No.3 について は、冷却時における空気量の増加に伴う炭化速度及び内 部温度の違いを確認するために、1時間加熱終了後の冷

正会員	○金城仁*	正会員	齋藤潔**
正会員	松本匠***	正会員	堀尾岳成*
正会員	遊佐秀逸****	正会員	平島岳夫*****

却過程における炉内空気量を No.2 に対して 3 割程度増や して実験を行った。No.4 は 1 時間加熱直後の最大耐力を 確認する実験、そして No.5 は 1 時間加熱終了後 3 時間の 自然放冷後(加熱後 4 時間)の耐力を確認する実験とした。 No.6 は No.4 で得られた最大耐力時の荷重による載荷加熱 実験とし、同様に No.7 は No.5 で得られた最大耐力時の 荷重による載荷加熱実験とした。No.1,4 及び 5 について は、常温時の最大耐力と火災加熱時及び火災加熱終了後 の冷却過程後の耐力低下の関係性の確認を目的とし、 No.6 及び No.7 については、No.4 及び No.5 の耐力確認実 験と得られた最大荷重での載荷加熱実験との相関性を確 認する目的である。これらの実験はすべて(一財)ベター リビングつくば建築試験研究センター多目的水平加熱炉 にて実施した。

3. 試験体

試験体数は全部で 7 体である。試験体の樹種はカラマ ツ(長野県産)、同一等級構成集成材であり、強度等級は E95-F315 である。ラミナの厚さは 30mm で、14 層のラミ ナで構成されている。接着剤にはレゾルシノール・フェ ノール系接着剤を用いた。試験体の断面寸法は幅 210mm× 背 420mm×長さ 6000mm とした。なお、今回の7 体の試験 体においては、火災時耐力についての検討を行うことか ら、試験体毎における耐力のバラツキを極力無くすため、 全ての試験体について、ラミナのフィンガージョイント 継手位置を全層ともに等曲げ区間である載荷点より外側 へ配置させている。試験体の密度及び含水率については、 通常の耐火性能評価試験等で選定されるような低密度の ものではなく、あくまでも一般的に構造用集成材を製造 した際の密度及び含水率を想定して試験体とした。試験 体の密度は 0.53 g/cm3、含水率は 11.0%であった(密度・ 含水率はラミナサンプルからの平均値)。

4. 炭化速度及び断面内温度分布確認実験

表-1に示した No.2 及び No.3 の試験体の寸法は、前 述した長さ 6,000mm の梁試験体を分割して製作した。分 割した試験体の寸法は幅 210mm×背 420mm×長さ 680mm で ある。1回の加熱実験における試験体数は5体で、試験体 を3面加熱とするために、試験体の上部及び分割小口面

Fire resistance of structural glued laminated timber beam Part1 Test program and Specimens は繊維混入けい酸カルシウム板およびセラミックファイ バーブランケットにて被覆し、直接加熱されないように 被覆した。実験条件は、加熱終了後における放冷時間で ある。試験体への加熱は IS0834 に規定する標準加熱温度 -時間曲線による 1 時間加熱とし、その後は炉蓋を閉めた 状態で炉内に放置した。加熱開始から 1 時間・2 時間・3 時間・4 時間及び 8 時間後に試験体を 1 体ずつ取り出して 消火後、炭化層を除去した。炭化深さの計測は、分割小 口面を避けた切断面(2 面)で行い、梁幅方向についてはラ ミナの接着面及びラミナの中央部、梁背方向については 梁幅方向中央部、中央から 15、30、45、50、55、60 及び 65mm の位置で行った。熱電対は、実験時間が最も長い 8 時間の試験体の内部に 18 点挿入した。試験体図(熱電対 挿入位置及び分割試験体写真)、を図 1 及び写真 1 に示す。

5. 耐力確認実験(常温及び載荷加熱)

表 1

常温時、火災加熱時及び火災加熱終了後における耐力 確認実験についての試験体及び実験概要図を図2 に示す。

実験条件

試験体	実験条件	
No. 1	常温耐力確認実験	
No. 2	加熱実験(1時間加熱+7時間の自然冷却)	
No. 3	加熱実験(1時間加熱+7時間の自然冷却) ※冷却時の空気量増加	
No. 4	1時間時耐力確認実験(1時間加熱)	
No. 5	4時間時耐力確認実験 (1時間加熱+3時間の自然冷却)	
No. 6	載荷加熱実験(No.4の最大耐力時の荷重による) (荷重支持能力が失われるまで加熱を継続)	
No. 7	載荷加熱実験(No.5の最大耐力時の荷重による) (1時間加熱+3時間の自然冷却) ※荷重支持能力が失われるまで実験継続	

65

45

図1 熱電対挿入位置(18点)

*(一財)ベターリビング

**齋藤木材工業株式会社

***千葉大学大学院工学研究科 大学院生

****(一財)ベターリビング 工学博士

*****千葉大学大学院工学研究科 准教授・博士(工学)

No.4~No.7 の試験体は試験体上面を除く 3 面加熱とする ため、上部は繊維混入けい酸カルシウム板およびセラミ ックファイバーブランケットにて被覆し、直接加熱され ないように被覆した。試験体への加熱は No.2 及び No.3 の加熱実験と同様に ISO834 に規定する 1 時間の標準加熱 とした。No.1 の常温耐力実験においては、梁中央の縁ひ ずみについても、圧縮及び引張両側において測定した。

6. おわりに

本報(その 1)では実験概要及び試験体について述べた。 次報(その 2~その 3)以降において、先に挙げた検討項目 に対しての実験結果の報告を行う。

謝辞

本研究を実施するにあたり、実験計画及び試験体製作にお いては、三生技研(株)に多大なご協力を頂きました。ここに 記して謝意を表します。

図2 試験体及び実験概要図

写真1 分割試験体

- *Center for Better Living,
- **Saito Wood Industry Co., Ltd.
- ***Graduate Student, Graduate School of Eng., Chiba Univ.
- ****Center for Better Living, Dr. Eng
- *****Associate Prof., Graduate School of Eng., Chiba Univ., Dr. Eng.