クロスラミナパネルを用いた3階建木造建築物の振動実験

クロスラミナパネル	振動実験	応答変位
固有振動数	減衰定数	

1. はじめに

挽き板を直交積層し面的に接着したクロスラミナパネ ル(以下 XLam)を用いた建築物が10年ほど前からヨーロ ッパを中心に建設されている。イタリア CNR-IVALSA は、 XLam を用いた木造建築の信頼性向上のため、SOFIE プロ ジェクトを組織し、耐震性能検証のため、XLam を用いた 木造3階建建築物の振動実験を実施したので報告する。

なお本研究は、CNR-IVALSA と防災科学技術研究所の共 同研究により行われた。

2. 試験体

試験体は 7m×7m、高さ 10m の3階建で、屋根面は切り 妻とし棟木が加震方向と平行となる構造物ある。建物を 構成する XLam は、壁パネルが高さ 2.95m、幅 2.34m、厚 さ 85mm、床パネルは幅 2.34m(一部幅 1.30m)、長さ 7.0m、 厚さ 142mm となっている。パネルの接合は、直径 6mm で 長さが 260mm, 180mm, 140mm, 100mm の4 種類のスクリュー ネジを用い固定した。またパネル下端部にはホールダウ ン金物と L 形金物を配し、パネルの回転や水平移動を拘 束している。建物は、1階部分の加震方向の開口面積を 変えることで3つのフェーズの実験を行った。フェーズ A は南北開口 1.2m、フェーズ B は 2.3m、フェーズ C は南面 のみ開口 4m とし偏心壁配置とした。建物全景を写真 1を、 図 1に1階平面図(フェーズB)を示す。

写真 1 試験体 南面全景 (フェーズC 南側開口 4m)

2,255 2,340 2,255 2,340

> 図 1 1 階平面図 (フェーズB)

2,340

固定荷重、積載荷重に相当する鉄板錘を、300kg/m²とな るよう、1,2 階床面に 15 トン均等に設置し、おもり端部 はストッパーを配しスクリューネジで固定した。試験体 は、建物自重が 22 トン、鉄板錘が 30 トン、合計 52 トン となっている。

Æ	○岡部 実 *1	Æ	Ario Ceccotti *2
]]	安村 基*3	//	箕輪親宏 *4
]]	河合直人 *5		

加振方法及び測定方法

振動台は、防災科学技術研究所大型耐震実験施設の振 動台(水平一方向 14.5m×15.0m)を用いた。入力地震波 は、兵庫県南部地震における JMA KOBE N-S 波、El Centro N-S 波及び Nocera Umbra E-W 波(Italy 1997)の3 種類とした。最大加速度レベルは 0.15G、0.5G を基本と し、フェーズCでは、JMA KOBE 0.82G、Nocera Umbra 1.2G、JMA KOBE 100kine(0.9G)を最後に追加した。また 地震波入力前後に振動台変位 1mm のステップ加振及びラ ンダム波加振を行った。

測定は、振動台、2階床面、3階床面、頂部の加振平 行方向及び直交方向の加速度(サーボ型加速度計)、不動 点タワーに設置した変位計による各層水平絶対変位(ワ イヤー式とレーザー式併用)及び建物内部に設置した変 位計での層間変位(インダクタンス式及びひずみゲージ 式)の測定を行った。またパネル端部の鉛直方向の変位、 パネル間相対変位(ひずみゲージ式)及び1階ホールダ ウン固定 M16 ボルトの軸力(センターホール型荷重計) も合わせて行った。

4. 結果及び考察

(1)固有振動数

各フェーズにおいて地震波加振前後での建物の固有振 動数変化を図 2に示す。フェーズAからフェーズCに実 験が進むと1 階部の開口面積が大きくなることから、固 有振動数は下がる。また各フェーズとも最大加速度レベ ルが小さい入力から徐々に大きな入力を行っているため、 同一フェーズでの初期と最後では約 0.5Hz~1.0Hz 固有振 動数が下がる傾向が見られた。最後に入力した KOBE N-S 波 100kine の加振では、1Hz 固有振動数が下がる結果と なった。

(2) 減衰定数

ステップ加振における自由振動曲線から減衰定数を算 出した。固有振動数と減衰定数の関係を図 3に示す。本 実験の木造建築物では、加振前の固有振動数が 6Hz~ 4.5Hz 程度、減衰定数は 4%~5%であった。また固有振動 数はフェーズが進み、かつ加振が繰り返されることで低 下する傾向を示したが、減衰定数は大きく変化していな い結果となった。

Shaking Table Test of a 3 storey XLam Building

OKABE Minoru, Ario Ceccotti, YASUMURA Motoi, MINOWA Chikahiro, KAWAI Naohito

図 2 各フェーズでの加振前後の固有振動数

図 3 固有振動数と減衰定数の関係

(3) 最大応答変位比較

0.56 入力におけるフェーズ毎の応答変位比較を図 4に 示す。全てのフェーズで1 階の応答に比べ、2 階の応答 変位が大きい傾向が見られた。またフェーズが進むにつ れて1 階応答変位は増加傾向が見られるものの、その他 の階では、明確な傾向を示していない。フェーズが進む ことで1 階部分の開口が大きくなることから、1 階応答変 位が増加したものと考えられる。3 階の応答変位が小さい のは、屋根面に錘を設置していないこと、また2 階の応 答変位が大きいのは、パネル端部の金物固定が、木材と 木材になっているのに対し、1 階は金物の片側が H 形鋼 に緊結されているため、2 階の変形が大きくなったことや、 鉄板錘による鉛直力が1 階の方が大きく、パネルの回転 を拘束したことなどが考えられる。パネル端部の鉛直方 向変位の動きなど詳細な検討が必要であり、今後の課題 としたい。

(4) 1 層の復元力と応答変位

図 5は、測定した加速度と建物の質量から1層の復元 カ(荷重)を計算し、全ての加振における荷重と応答変位 の最大値を算出しプロットした結果を示している。図中 の実線は、事前に行われた XLam パネルの静的試験結果⁽¹⁾ から、単位長さ当たりの耐力と剛性を算出し、振動実験 試験体の加振方向壁長さを乗じて算出したもので、フェ ーズ毎に示した。振動実験から求めた荷重-変位は、静 的加力で得られた包絡線に対し高めの値となった。直交 壁の効果などが考えられる。

図 5 振動実験による1層荷重-応答変位の最大値 **謝辞** 本実験の計画・実施・報告にあたり、CNR-IVALSA Maurizio Follesa 氏、Marco Pio Lauriola 氏に、またデータ整理では静岡大学農 学部長江氏に多大な協力を得た。ここに記して謝辞とする。

参考文献

 Ario Ceccotti, Maurizio Follesa and Marco Pio Lauriola et al.: SOFIE Project – Seismic tests on multistory wood buildings made of solid wood panels, Proceeding of WCTE2006 Portland USA, 2006

*1 ベターリビング筑波建築試験センター 主席試験研究役 農修
*2 CNR-IVALSA Tree and Timber Institute
*3 静岡大学農学部環境森林科学科 教授・農博

*4 防災科学技術研究所 研究参事 博士 (工学)

*5 建築研究所構造研究グループ 上席研究員・工博

*1 Center for Better Living Tsukuba Building Test Laboratory

*2 Director, CNR-IVALSA Tree and Timber Institute

*3 Prof. Dept. of Environment and Forest Resources Science, Faculty of Agriculture, Shizuoka Univ., Dr. Agriculture

*4 Scientific Research Adviser, NIED, Dr. Eng.

*5 Chief Research Engineer, Dept. of Structural Engineering, BRI, Dr. Eng