# 鋼管と炭素繊維シートによる既存梁開孔部の補強 -プリズム形試験体による圧縮実験-

| 梁     | 鉄筋コンクリート | 開孔補強 |
|-------|----------|------|
| 既存建築物 | 炭素繊維シート  | 鋼管   |

## 1.はじめに

既存建築物の有効利用の観点から、建築物の改修に伴う用途変更、いわゆるコンバージョンが進められている。 その際、設備機器のリニューアルに伴い、鉄筋コンクリート造の既存梁への開孔を要求されることがある。既存 梁にコアカッター等で開孔を設けることで梁の断面が欠 損し、場合によってはあばら筋の一部を切断するため、 梁のせん断性状が著しく低下することとなる。現在、コ ンバージョンの対象となる建築物は、建設された年代を 考慮すれば耐震性の観点からも補強が必要であることが 多く、耐震補強と同時に開孔部の補強を行う必要がある。 しかし、施工性を考慮した効果的な補強方法の提案は少 なく、またその補強効果も明確でない。本報では炭素繊 維シート(以下CFシート)と鋼管を使用した梁開孔部の 補強方法を提案する。

### 2.開孔部周囲の抵抗機構

図1 に対角方向に圧縮力を受けるコンクリートブロッ クを示す。ここで形成される圧縮束は、梁のせん断抵抗 機構であるアーチ機構あるいはトラス機構を成立させる ためのものであり、実際の梁においては外力、あるいは 主筋とあばら筋の引張力と釣り合う要素である。

同図aは無開孔の場合であり、四角形に作用する外力に 対して対角線を結ぶコンクリートの圧縮束が釣り合う。 この斜め圧縮束が通る所に開孔を設けた例を同図bに示す。 この時、コンクリートの圧縮束は開孔部の周囲を迂回す るように屈折すると考えられる。この機構を成立させる ためには開孔周りの 4 辺に引張補強材が必要となる。こ こで使用するCFシートは、その引張強度を十分に発揮す るために、躯体へ確実に定着させる必要がある。

### 3.鋼管による開孔補強

CF シートによる補強量が多く、かつコンクリート強度 が低い場合は、開孔部周囲のコンクリートの圧縮強度で 耐力が決定される。図 1c に示すように開孔部に鋼管を入



Strengthning for Perforated Beam Using Steel Pipe and Carbon Fiber Sheets

The compression test of prismatic specimens –

| 正会員 | ○中村 | 洋行*1            | 同 | 福山 | 洋* <sup>2</sup> |
|-----|-----|-----------------|---|----|-----------------|
| 同   | 藤本  | 効* <sup>3</sup> | 同 | 浅野 | 芳伸*4            |
| 同   | 高橋  | 茂治*⁵            | 同 | 加藤 | 貴久*6            |
| 同   | 鈴木  | 英之*7            | 同 | 上田 | 正生*8            |

れると圧縮束の一部は屈折せずに、鋼管に直接伝わる。

図2に鋼管に形成される降伏線の仮定を示す。ここに 示したのは鋼管の断面であり、実際には鋼管の長さ方向 に降伏線が形成されているものとする。同図aは水平方 向の拘束が無い場合である。円周上に4箇所の降伏線を 仮定すると、鋼管を横圧縮した時の降伏荷重は降伏線理 論により式(1)で表される。

 $P_{1} = \frac{2L \cdot t^{2} \cdot \sigma}{3r}$  (1) L:鋼管長 , t:鋼管厚さ r:鋼管半径,  $\sigma$ :降伏強度

一方,図1cに示したように開孔に鋼管を入れた場合, 鋼管の周囲はコンクリートで拘束される。鋼管周囲のコ ンクリートに割裂ひび割れが発生すると拘束力は開放さ れるが,開孔の周囲をCFシートで補強した場合はひび割 れ発生後も拘束力を期待できる。図2bに示すように水平 方向の変位を拘束し,8箇所の降伏線が形成されると仮定 すると,横拘束された鋼管の降伏強度は式(2)で表される。

$$P_2 = \frac{4\sqrt{2}L \cdot t^2 \cdot \sigma}{3r} \qquad (2)$$

式(1)と式(2)より,水平方向を拘束した時の降伏荷重 P2 は P1の 2.83 倍となる。実際にはコンクリートと鋼管は面 で接しているため,明確な降伏線を定義するのは困難で あるが,鋼管周囲のコンクリートを CF シートで拘束する ことによって,効果的な開孔補強の可能性が示された。

#### 4. プリズム形試験体による実験

CFシートと鋼管による開孔部の補強効果を確認する目 的で簡易なプリズム形試験体を用いた圧縮試験を行った。 4.1 試験体 図3に試験体形状図,表1に試験体一覧を示 す。試験体は対角部分の加力部を面取りしたプリズム形 とした。PNNN が無開孔, PCNN が中央に 60 φ の開孔を 設けたもの, PCNSs は外径 60 φ 厚さ 3.7mm の鋼管を入れ たもの, PCNSL は外径 76 φ 厚さ 3.8mm の鋼管を入れたも の, PCFSs は PCNSs と同じ鋼管を入れ,開孔の周囲に CF



NAKAMURA Hiroyuki, FUKUYAMA Hiroshi, FUJIMOTO Isao, ASANO Yoshinobu, TAKAHASHI Shigeharu, KATOH Takahisa, SUZUKI Hideyuki and UEDA Masaiki



シートを井形に巻き付けた試験体である。K60 と K76 は 鋼管であり、それぞれ PCNSs, PCNSL に使用した鋼管と同 寸法である。

4.2 加力・計測 プリズム形試験体の加力は 5000kN 圧縮 試験機を用いて、面取りされた部分を対角方向に単調圧 縮載荷した。K60 と K76 は鋼管を横に寝かせ、単調圧縮 載荷した。計測は圧縮方向の変位と CF シート表面のひず みとした。

#### 5.実験結果

図4 に荷重-対角方向圧縮ひずみ関係,図5 に同じく 微少変形時の拡大図を示す。ここで, 横軸は加力方向の 変位を計測点間距離で除した値とした。写真1 にひび割 れ状況の一例を示す。

無開孔の PNNN は 178kN でひび割れが発生し荷重が低 下したが、その後変形と共に荷重が増加し最大耐力は 207kN(圧縮ひずみ 0.16%)だった。有開孔無補強の PCNN は 63.6kN で加力点を結ぶひび割れと、加力方向に対して 45°方向のひび割れが入ると同時に破壊に至った。鋼管 を入れた PCNSs は PCNN と比較して剛性が高く,ほぼ同 じ荷重でひび割れが生じた。最大荷重は PCNN より, 15.8kN 高く、ピーク後は緩やかに荷重が低下した。 PCNSL は開孔が大きいため、ひび割れ荷重と最大荷重が 低いが、PCNSs と同様な経過を示した。PCFSs は PCNSs が最大荷重を迎えた 0.04%までは、ほぼ同じ経過を示した

が、その後、CF シートの引張ひずみが大きくなり、変形 が進むにつれ徐々に荷重が増加した。最大荷重時には開 孔周囲の CF シートのひずみはいずれも 3000~4000 µ で あった。最大荷重後の荷重低下は少なく圧縮ひずみ 1.5% まで最大荷重の約 90%を保持しつづけた。鋼管は明らか に塑性変形していたが,鋼管とコンクリート間には隙間 が見られず,鋼管が周囲のコンクリートと CF シートによ って横拘束されてた。

図 6 に鋼管の横圧縮試験結果を示す。弾性限界は K60 が 12.3kN, K76 が 13.0kN であり, その後, 徐々に剛性が 低下しつつ最大荷重は弾性限界の 1.5~1.8 倍以上となっ た。PCNSs と PCNN の耐力差が鋼管の降伏強度に近い値 であるが、内蔵された鋼管は降伏強度に至るほど変形し ていなかった。PCFSsと PCNN の荷重差は 56.4kN である。 図 6 より K60 の降伏荷重を 20kN 程度とすれば、これに前 述の水平方向を拘束した鋼管の強度上昇率の 2.83 倍を乗 じた値と、PCFSs の荷重増加分が近い値であることがわか る。実際には鋼管の拘束条件や CF シートだけによる耐力 の増加分等,不明な点が残されているが,鋼管と CF シー トによる開孔部補強の有効性が実験により確認された。 6.まとめ 既存梁に後施工で開孔を設けた際の補強方法と して、鋼管と CF シートを併用した工法を提案した。また、 簡易な実験により鋼管および CF シートによる補強効果を 確認した。

- \*1 コンステック \*2 建築研究所 工博
- \*3 ベターリビング 工博 \*4 奥村組

- \*5 川口テクノソリューション \*6 三菱化学産資
- \*7 安藤建設 工博 \*8 北海道大学院教授 工博
- \*1 Constec Engineering \*2 Building Research Institute, Dr.Eng \*3 Center for Better Living, Dr.Eng \*4 Okumura Corporation
- \*5 Kawaguchi Techno Solution \*6 Mitsubishi Chemical Functional Products
  - \*7 ANDO Corporation, Dr.Eng \*8 Professor, Hokkaido Univ., Dr.Eng